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This work proposes a predictive digital twin approach to the health monitoring and management planning of civil
structures. The asset-twin dynamical system and its evolution over time are encoded by means of a probabilistic
graphical model, adopted to rule the observations-to-decisions flow and quantify the related uncertainty. Deep
learning models are adopted to assimilate observational data, and provide structural health diagnostics in real-
time. The digital state is updated in a sequential Bayesian inference fashion, to inform an optimal planning of
maintenance and management actions. A preliminary offline phase involves the population of training datasets
through a reduced-order numerical model, and the computation of a health-dependent control policy.
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1. Introduction

The digital twin (DT) concept represents the most exciting opportunity to move forward predictive maintenance
practices, and thus increase the safety and availability of civil structures. This is nowadays possible as the installa-
tion of data collecting systems has become affordable, and thanks to the advances in learning methodologies.

This work proposes a DT framework for civil structures. The asset-twin dynamical system is encoded by means
of a dynamic Bayesian network (DBN) inspired by [1]. The observations-to-decisions flow is encoded as:

• From physical to digital. Observational data, or measurements, are gathered from the physical system and
assimilated with deep learning (DL) models, see e.g. [2], to estimate the structural health parameters underly-
ing the digital state and describing the variability of the physical asset. This first estimate of the digital state
is then exploited to estimate an updated digital state, according to control-dependent transition dynamics
models describing how the structural health is expected to evolve.

• From digital to physical. The updated digital state is employed to predict the future evolution of the physical
system, thereby enabling predictive decision making about maintenance and management actions.

The DT framework is made computationally efficient through a preliminary offline phase that involves: (i) the
population of training datasets through a reduced-order numerical model, see e.g. [3], exploiting the physics-based
knowledge about the system response. This is useful to overcome the lack of experimental data typical of civil
engineering applications. (ii) training the DL models underlying the structural health identification. This allows for
automating the selection and extraction of optimized damage-sensitive features, to ultimately relate them with the
corresponding structural states in real-time. (iii) learning the health-dependent control policy to be applied at each
time step of the online phase, to map the belief over the digital state onto actions feeding back to the physical asset.

The strategy is assessed on the simulated monitoring of a railway bridge, demonstrating the capabilities of
health-aware DTs of accurately tracking the evolution of structural health parameters under varying operational
conditions, and promptly suggesting the most appropriate control input with relatively low uncertainty.
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2. Methodology

The DT assimilates vibration recordings shaped as multivariate time histories U(µ) = [u1, . . . ,uNu ] ∈
RL×Nu , consisting of Nu time series made of L sensor measurements. To this aim, a simulation-based strategy is
adopted to train DL models on vibration response data, exploiting physics-based models. The asset to be monitored
is modeled as a linear-elastic continuum, discretized in space through finite elements. Its dynamic response to the
applied loadings is described by the semi-discretized form of elasto-dynamics. The model is parametrized through
a vector µ ∈ RNpar of Npar parameters ruling the operational and damage conditions. Damage is modeled as a
localized reduction of the material stiffness, obtained by means of two variables y ∈ N and δ ∈ R, respectively
describing its position, among a set of predefined locations y = 0, . . . , Ny, and its magnitude. To speed-up the
generation of synthetic datasets, a reduced-order model, relying on a reduced basis method, is adopted in place of
the finite element model. The training dataset D is then populated with I instances as D = {(Ui, yi, δi)}Ii=1.

In order to detect, locate, and quantify the presence of structural damage, a classification DL model NNCL :
U → y is adopted to address damage detection/localization, and regression DL models NNj

RG : U → δ, with
j = 1, . . . , Ny, are subsequently adopted to address damage quantification.

The DBN defining the asset-twin dynamical system is sketched in Fig. 1. The physical state St ∼ P (st),
encapsulates the variability in the state of the asset. The digital state Dt ∼ P (dt) is instead characterized by
the structural health parameters adopted to capture such a variability. The observed data Ot = ot are assimilated
with the DL models, to provide a first estimate of the digital state DNN

t ∼ P (dNN
t ). This is then adopted in a

Bayesian inference fashion, to update the prior belief Dt−1 and estimate an updated digital state Dt. This can thus
be exploited to compute quantities of interest Qt ∼ p(qt) and to suggest the next control input. Ut ∼ P (ut) and
UA
t = uAt denote the belief about what action to take and the control input effectively enacted, respectively. Ut

is estimated according to a control policy, that is computed offline by solving the planning problem induced by
the expected evolution of the structural health. This involves maximizing the reward Rt ∼ p(rt) quantifying the
asset performance over the planning horizon. By exploiting the conditional independence resulting from the graph
topology and the Bayes rule, the joint distribution over variables is factorized up to the current time step tc, as:
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(2)

Since the spaces of the unobserved variables is discrete, we can propagate and update the relative belief exactly
with a single pass of the sum-product algorithm. Starting from the updated digital state Dtc , prediction in future is
then achieved by unrolling until a desired prediction time the portion of the graph relative to Dt, Qt, Rt and Ut.
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Figure 1: Adopted DBN: circle nodes denote random variables, square nodes actions, and diamond nodes the ob-
jective function. Bold outlines denote observed quantities, thin outlines estimated quantities. Solid edges represent
dependencies encoded via conditional probability tables, dashed edges encode out-of-the-graph computations.
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3. Simulated experiment

The DT framework is applied to the simulated monitoring of a railway bridge. Synthetic vibration recordings
U are obtained from Nu = 10 sensors deployed as depicted in Fig. 2a. In addition to the undamaged condition,
damage is accounted for by means of a stiffness reduction that can take place within Ny = 6 predefined subdomains
Ωj , j = 1, . . . , Ny, with magnitude δ ∈ [30%, 80%]. The structural health parameters underlying the digital state
are therefore d = (y, δ). We consider the following control inputs: do nothing (DN) – the physical state evolves
according to a stochastic deterioration process; perfect maintenance (PM) – the asset returns to the damage-free
state; restrict operational conditions (RE) – only light weight trains are allowed to travel across the bridge, yielding
a lower deterioration rate and a lower revenue. Fig. 2b reports a sample DT simulation, in which the variation in
the digital state is estimated every time a train travels across the bridge. Damage initially develops within Ω5. The
RE action is suggested as soon as the DT estimates a δ ≥ 35%, after which point the DT keeps on tracking the
structural health evolving with a lower deterioration rate. A PM action is finally suggested due to an excessively
compromised structural state. A similar behavior can be observed for the following damage scenario affecting Ω6.

(a)

centered at 0.95% and featuring a standard deviation equal to 0.5%. The resulting trajectory of
the structural health parameters is intended to represent periods of gradual degradation in the
structural health, as well as sudden changes due to discrete damage events.

The transition model P (Dt+1|Dt, U
A
t = uA

t ) associated to the DN action assumes that damage
may start in any subdomain ⌦j , with j = 1, . . . , Y , with probability equal to 0.1, and then grow to
the next � interval with the same probability. For the transition model associated to the RE action,
this probability is assumed to decrease to 0.03. The transition model assumed for the PR action
instead maps the Dt belief to a belief Dt+1 associated with a damage-free condition, independently
of the current condition.

In this case, the two reward functions in Eq. (21) are chosen as:

Rcontrol
t (uA

t ) =

8
<
:

+30, if uA
t = DN,

�250, if uA
t = PM,

+27, if uA
t = RE,

Rhealth
t (dt) =

8
<
:

+0, if y = 0,
�exp(5�) + 4, if y 6= 0,
�250, if � � 79%,

(27)

where the last contribution in Rhealth
t penalizes excessively compromised structural states with a

significantly negative reward.

3.3.3 Results

During the o✏ine phase, we solve the planning problem in Eq. (20) by assuming a discount factor
� = 0.90, and a weighting factor ↵ = 1. The resulting control policy ⇡(Dt) recommends that the
asset operates in ordinary conditions until when � � 35%, at which point it should fall back to the
more conservative RE regime in order to minimize further degradation until when � � 65%, and
after that point the bridge should be repaired.

Fig. 14 reports a sample simulation of the DT online phase up to time step tc = 60. The DT
correctly tracks the digital state with relatively low uncertainty. Damage initially develops within
⌦5, and the DT follows its evolution with a limited delay of at most two time steps, with respect
to the ground truth, due to the need of updating the relative prior belief from the previous time
steps. The RE action is suggested as soon as the DT estimates a � � 35%, after which point the
DT keeps on tracking the structural health parameters evolving with a lower deterioration rate,
until when a PM action is suggested due to an excessively compromised structural state. A similar
behavior can be observed for the following damage scenario a↵ecting ⌦6.

Figure 14: Railway bridge online phase of the digital twin framework. Probabilistic and best point
estimates of: (top) digital state evolution against the ground truth digital state; (bottom) control
inputs informed by the digital twin, against the optimal control input under ground truth.

Fig. 15 reports the predicted evolution of the digital state and control inputs, from tc = 5
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(b)

Figure 2: (a) details of synthetic recordings related to displacements u1(t), . . . , u10(t), and predefined damageable
regions Ω1, . . . ,Ω6; (b) probabilistic and best point estimates of (top) digital state evolution against the ground
truth digital state, and (bottom) informed control inputs against the optimal control input under ground truth.

4. Conclusions

In this work, we have proposed a predictive digital twin approach to the health monitoring of civil structures, to
move forward predictive maintenance practices. The obtained results have demonstrated the digital twin capabilities
of tracking the digital state with relatively low uncertainty, and promptly suggesting the appropriate control input.
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