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We present a novel Machine Learning technique able to learn differential equations that surrogate the solution of
space-time-dependent problems. Our method exploits a finite number of latent variables, providing a compact
representation of the system state, automatically discovered during training. It allows building, in a fully non-
intrusive manner, surrogate models accounting for the dependence on parameters and time-dependent inputs.
This work pushes forward a novel technology towards the construction of data-driven digital twins in various
application fields.
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1. Introduction

Predicting the evolution of systems that exhibit spatio-temporal dynamics in response to external stimuli is a
key enabling technology fostering scientific innovation. Traditional equations-based approaches leverage first prin-
ciples to yield predictions through the numerical approximation of high-dimensional systems of differential equa-
tions, thus calling for large-scale parallel computing platforms and requiring large computational costs. Data-driven
approaches, instead, enable the description of systems evolution in low-dimensional latent spaces, by leveraging di-
mensionality reduction and deep learning algorithms [1, 2, 3, 4, 5, 6]. Through the data-driven modeling approach,
our work provides a solid methodological foundation for creating digital twins, enabling predictive simulation in a
fast and accurate manner [7].

2. Methods

We propose a novel architecture, named Latent Dynamics Network (LDNet), which is able to discover low-
dimensional intrinsic dynamics of possibly non-Markovian dynamical systems, thus predicting the time evolution
of space-dependent fields in response to external inputs [8]. Unlike popular approaches, in which the latent repre-
sentation of the solution manifold is learned by means of auto-encoders that map a high-dimensional discretization
of the system state into itself, LDNets automatically discover a low-dimensional manifold while learning the latent
dynamics, without ever operating in the high-dimensional space. Furthermore, LDNets are meshless algorithms
that do not reconstruct the output on a predetermined grid of points, but rather at any point of the domain, thus
enabling weight-sharing across query-points. These features make LDNets lightweight and easy-to-train, with
excellent accuracy and generalization properties, even in time-extrapolation regimes.
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3. Results

We demonstrate the effectiveness of LDNets through several test cases. First, we consider a linear PDE model
to analyze the ability of LDNets to extract a compact latent representation of models that are progressively less
amenable to reduction. Then, we consider the time-dependent version of a benchmark problem in fluid dynamics.
Finally, we compare LDNets with state-of-the-art methods in a challenging task, that is, learning the dynamics of
the Aliev-Panfilov model [9], a highly non-linear excitation-propagation PDE model used in the field of cardiac
electrophysiology modeling. In the latter test case (see Fig. 1) we show that LDNets outperform state-of-the-art
methods in terms of accuracy (normalized error 5 times smaller), by employing a dramatically smaller number of
trainable parameters (more than 10 times fewer).

We focus on synthetically generated data obtained by numerical approximation of differential models, thus
allowing us to test LDNet predictions against ground-truth results. We evaluate the prediction accuracy of the
trained models using two metrics: the normalized root-mean-square error (NRMSE) and the Pearson dissimilarity,
1 − ρ, where ρ is the Pearson correlation coefficient. To tune hyperparameters, we employ a Bayesian approach,
namely the Tree-structured Parzen Estimator algorithm [10], combined with Asynchronous Successive Halving
scheduler to early terminate bad hyperparameters configurations [11].
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Figure 1: Results of the Aliev-Panfilov test case. We compare the results obtained different methods (reported
in the captions) for a sample belonging to the test dataset. The left-most column reports the FOM solution of the
AP model (the abscissa denotes time, the ordinate denotes space). For each method we report: (a) the space-time
solution; (b) the space-time error with respect to the FOM solution; (c) the time-evolution of the 12 latent variables;
(d)-(e)-(f) three snapshots of the space-dependent output field at t = 250, 300 and 350, in which we compare the
predicted solution (red solid line) with the FOM solution (black dashed line).
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4. Conclusions

LDNets represent, as proved by the results of this work, an innovative tool capable of learning spatio-temporal
dynamics with great accuracy and by using a remarkably small number of trainable parameters. They are able
to discover, simultaneously with the system dynamics, compact representations of the system state, as shown in
Test Case 1 where the Fourier transform of a sinusoidal signal is automatically discovered. Once trained, LDNets
provide predictions for unseen inputs with negligible computational effort (order of milliseconds for the considered
Test Cases). LDNets provide a new flexible and powerful tool for data-driven digital twins that is open to a wide
range of variations in the definition of the loss function (like, e.g., including physics-informed terms), in the training
strategies, and, finally, in the NN architectures. The comparison with state-of-the-art methods on a challenging
problem, such as predicting the excitation-propagation pattern of a biological tissue in response to external stimuli,
highlights the full potential of LDNets, which outperform the accuracy of existing methods while still using a
significantly lighter architecture.

REFERENCES

1. Bongard, J. and Lipson, H. Automated reverse engineering of nonlinear dynamical systems, Proceedings of
the National Academy of Sciences, 104 (24), 9943–9948, (2007).

2. Schmidt, M. and Lipson, H. Distilling free-form natural laws from experimental data, science, 324 (5923),
81–85, (2009).

3. Peherstorfer, B., Gugercin, S. and Willcox, K. Data-driven reduced model construction with time-domain
loewner models, SIAM Journal on Scientific Computing, 39 (5), A2152–A2178, (2017).

4. Rudy, S. H., Brunton, S. L., Proctor, J. L. and Kutz, J. N. Data-driven discovery of partial differential equations,
Science advances, 3 (4), e1602614, (2017).

5. Bar-Sinai, Y., Hoyer, S., Hickey, J. and Brenner, M. P. Learning data-driven discretizations for partial differ-
ential equations, Proceedings of the National Academy of Sciences, 116 (31), 15344–15349, (2019).

6. Cenedese, M., Axås, J., Bäuerlein, B., Avila, K. and Haller, G. Data-driven modeling and prediction of non-
linearizable dynamics via spectral submanifolds, Nature communications, 13 (1), 1–13, (2022).

7. Regazzoni, F., Salvador, M., Dedè, L. and Quarteroni, A. A machine learning method for real-time numerical
simulations of cardiac electromechanics, Computer Methods in Applied Mechanics and Engineering, 393,
114825, (2022).

8. Regazzoni, F., Pagani, S., Salvador, M., Dede, L. and Quarteroni, A. Latent dynamics networks (ldnets):
learning the intrinsic dynamics of spatio-temporal processes, arXiv preprint arXiv:2305.00094, (2023).

9. Aliev, R. R. and Panfilov, A. V. A simple two-variable model of cardiac excitation, Chaos, Solitons & Fractals,
7 (3), 293–301, (1996).

10. Bergstra, J., Bardenet, R., Bengio, Y. and Kégl, B. Algorithms for hyper-parameter optimization, Advances in
neural information processing systems, 24, (2011).

11. Li, L., Jamieson, K., Rostamizadeh, A., Gonina, E., Ben-Tzur, J., Hardt, M., Recht, B. and Talwalkar, A. A
system for massively parallel hyperparameter tuning, arXiv preprint arXiv:1810.05934, (2020).

BUILD-IT Workshop 2023 – BUILding a DIgital Twin: requirements, methods, and applications 105


	Introduction
	Methods
	Results
	Conclusions

