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Digital What?
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Digital Twins (DTs)

* Digital twin prototype (DTP)
e design, analyses, and processes to realize

a physical product ==» rebranding of old
CAD and modeling and simulation

* innovation: real-time (RT) counterpart (RT-DTP)
for accelerating the objectives

* Digital twin instance (DTI)

e digital twin of a specific instance of the
product, after it is manufactured

* learn from data to perform model updating
* Digital twin aggregate (DTA)

* aggregation of DTIs, allowing for larger
sensor datasets and therefore enhanced
learning and prognostic processes

* Industry 4.0

physical system

digital replica

surrogate modeling for
tractability and/or

real-time performance

* crisis management, predictive maintenance, quality control, warranty optimization



Data-Driven Surrogate Modeling

* External representation * Internal representation
input output input output
H= Ly e ] Y=o ¥l u=lw, .., 1] Y= [V s V]
% ® queried points y = f(u) via the post-processing of a physics-
= ® sampled points based, high-fidelity model of the system
— 900 —0o 0o
U
* Examples and characterization  Examples and characterization
* Gaussian processes (GPs), regression * projection-based reduced-order models
artificial neural networks (ANNs) (PROMs), simplified-physics models
* a few, pre-determined, scalar * many Qols, determined via exploration
quantities of interest (Qols) e Qols can be spatio-temporal fields

* real-time surrogate models of output(s) * real-time surrogate models of systems



Purely Data-Driven vs Physics-Based Data-Driven Computational Modeling

Data-Driven technigques
are appropriate

Lots of Similar Data

Unreliable health

Availability of Comparative Data

Little Data Available

Both methods are
appropriate and may
complement each other

Physics-based Models

assessments are appropriate

Low Reliability High Reliability
Reliability of Physics-based models . ..o suseiorssitorsane
Physics model reliability o < on the complexity of the system

* How to identify the Qols (rare events,

Adapted from Inman et al. (2005}, Georgia Tech

failure modes, multiple scales, ...)?

T < T,
e VT < VT,

e Crack nucleates at the microscale, but online
monitoring is performed at the macroscale
w=p Q0Is? amount of data? model reliability?




Surrogate Modeling

e External representation
input
H= [ty s ]

output ‘
Y=Yy e Yyl

@ queried points

y=f(w)

® sampled points

— —9 00— —0 00—
U

* Examples and characterization

* Gaussian processes (GPs), regression
artificial neural networks (ANNSs)

* a few, pre-determined, scalar
quantities of interest (Qols)

* real-time surrogate models of output(s)

* Internal representation

input output

Y=Yy Yyl

SYSTEM

H1= [y e 1]

y = f(u) via the post-processing of a physics-
based, high-fidelity model of the system

 Examples and characterization

* projection-based reduced-order models
(PROMs), simplified-physics models

* many Qols, determined via exploration
* Qols can be spatio-temporal fields
* real-time surrogate models of systems
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Danger

* In general, there is not much information regarding how accurate a DT is, compared to
its physical counterpart
the biggest concern that most business owners interested
w==p N this technology have is the risk of misrepresenting the
physical asset they want to replicate using a DT

* Requirements for twinning
* high-fidelity modeling, whether data-driven or physics-based-model-driven (DTP)
* modeling and quantifying uncertainty — and particularly model-form uncertainty (MFU)
* (non parametric) model updating



EE————
Model-Form Uncertainty (MFU)

* In general, once a model must be considered for any purpose, MFUs is unavoidable

* lack of knowledge of the true physics underlying the problem of interest

e omission or truncation of modeling details, (e.g. in computational structural dynamics:
constitutive, multi-scale, friction, homogenization, and free-play modeling errors)

* Less studied in literature on uncertainty quantification (UQ) than parametric uncertainty



EE————
UQ Using Surrogate Models

* The typical method for UQ involves stochastic computations (e.g. Monte Carlo
realizations): thus, it calls for surrogate models in order to achieve computational
tractability == additional MFU

* In the case of PROMs
* adaptive vs nonadaptive training of a reduced-order basis (ROB)
* finite sampling during training of a ROB
* projection error due to truncation
* modeling error due to adaption of a PROM

* In the case of regression of Qols (response surfaces, GPs, or ANNs)
* passive vs active training
* Gaussian kernel (GP), network architecture (ANN)
* amount of training data
* local optimum of the loss function (ANN)



UQ and Model Updating (and thus Digital Twinning) — KPIs

* For a given probability P., compute a confidence region with the following property

x107°

—— target response
—— model-based response before UQ/updating
confidence region (P, )

—— upper/lower envelope
—— m.v. model-based response after UQ/updating

x-displacement

Time



UQ and Model Updating (and thus Digital Twinning) — KPIs

* For a given probability P., compute a confidence region with the following property

%107

—— target response

- -- model-based response before UQ/updating
confidence region (P, )

quantile for P.

—— upper/lower envelope

x-displacement

/:
< - /|

the updated computational model is

quantile for 1 - P. more accurate/predictive than its

===p NON Updated counterpart for the
sensor data; but of course, interest

-2 1 ‘ 1 ‘ J is in most if not all data
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DT Concept for Structural Health Monitoring (with Autodesk)
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* Preventive maintenance
(more economical than
— scheduled maintenance)

e Early warning system for
damage detection
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Backdrop Computational Models — DTP

* Parametric, nonlinear, high-dimensional finite element (FE) model (HDM) of dimension N

M(w)ii(t; 1) — £ ™ (u(t; 1), Z(2); 1) = £ (t; 1)
u(Osu) = up(u), u(O;p) =ug(u), E(O;u) = Eo(u)

* Nomenclature

*LED : vector of design parameters in a design
parameter space of moderate dimension

e u ERYN :semi-discrete high-dimensional solution
e adot . designates a time derivative

o fint ¢ RV - semi-discrete vector internal forces

- fext e RY : semi-discrete vector of source terms
= n= . .
« = € R" : vector of nz internal variables
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Backdrop Computational Models — PROM (Entry-Level)

e Corresponding parametric PROM of dimensionn < N

ROBV e RV vIov =1,, QRN | u(t; 1) = Vy(t; u) + ttrer)| y(£; 1) € R™, tyer € RY

M ()5 (t2a1) — £ (0 (r240) B (i) = £ (030

M, () =V M)V £ ((23), 2(0)s 1) = V™ (085 0), E(0)310),

[ () =V ()

* Nomenclature
* y € R": reduced-order vector of generalized coordinates

* Observation/drawback

» complexity of the reduced-order (projected) quantity V7 fn (Vy+ urer) scales not only
with the reduced dimension n, but also with the large dimension N > n
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Backdrop Computational Models — HPROM/RT-DTP

* Corresponding parametric hyperreduced PROM (HPROM) of dimensionn << N
 ECSW (C. Farhat et. al., 2014): energy-conserving sampling and weighting

£ 0 0), 2(0)s ) = ™ (9(050), E(0)30)
Y, V)T (LEVy(tm), E(1)ip)

feXt(l‘ JU) feXt(l‘ ll) _ Z ae(LeV)Tfexte(t;u)

eE%CE

M, ()3(t:) — £ O0(t50), E(2)s0) = 5 p)

ECSW computes the cubature parameters ‘ZC ‘£ and {Ef} 7 by minimizing a loss function
based on the solution snapshots computed for constructing the ROB V

the complexity of the ECSW approximation is independent of the large dimension N
ECSW preserves the Lagrangian structure of second-order dynamical systems
ECSW preserves the numerical stability properties of the preferred time-integrator
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Sample Performance of a Nonlinear HPROM/RT-DTP

e Simulation of the underbody blast of an ARES tank

 HDM: J2 plasticity; nonlinear kinematics, large deformation, and contact; 336,844
elements (bricks, shells, rigid beams); 346,896 nodes; and N = 2,043,672 degrees of

freedom (dofs)
e 20 kg TNT (passenger side, wheel assembly) modeled using CONWEP module
* explicit transient dynamic analysis
* n=31<«2,043,673; |’ | =697 «< 336,844

Carl (-5

Mesh (HDM) " Reduced mesh (HPROM)
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Sample Performance of a Nonlinear HPROM/RT-DTP

e Simulation of the underbody blast of an ARES tank

sssss

Node 55803

<108

=

W
n

w
T

N
n

10000

Von Mises stress (Pa)
oo

=
T

— HDM
—— HPROM (31) |

o
¥

o

0.5 1 1.5 2 2.5 3 3.5 4
- 4
Time (s) <10

Wall clock time Speedup

HDM (2,043,673) — 250 cores 1.728 x 10° secs (48 hrs) wall clock time: 8,228
HPROM (31) — 1 core 21 secs CPU time: 2,057,142

w==p 0 HPROM is a good candidate for constructing a RT-DTP

o




Nonparametric Probabilistic Method (NPM) for MFU
M (w)ii(ts 1) — ™ (u(t), 2(0)s ) = [ (83 )
u(Osp) = uo(u), w(Osu) =uo(u), ZE(0:u) = Eo(u)

» Typical approach for performing UQ and last-generation approach for model updating
* randomize/vary the coefficients of the PDE —i.e. the parameter u = (u4, U, ...,,unu)
wp performing model updating is difficult

exp
.u

u(D’)

 NPM (Soize and Farhat, 2017): randomizes the subspace in which u is approximated
* expands the scope of the approximation subspace without increasing its dimension

C. Soize and C. Farhat, “A Nonparametric Probabilistic Approach for Quantifying Uncertainties in Low- and High-Dimensional
Nonlinear Models,” IINME, Vol. 109, pp. 837-888 (2017)
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NPM for Modeling and Quantifying MFU — Randomization of the ROB

* NPM randomizes the subspace in which the solution is approximated

* operates at the level of the HPROM instead of that of the HDM, in order to achieve
computational tractability

* substitutes the deterministic ROB IV with a stochastic counterpart V(a), where
o = (g, Ay, ..., Ay ) is a vector-valued hyperparameter == hyperparameterized

stochastic ROB and HPROM

* Desired properties of the stochastic ROB
* V(o) is global and therefore independent of u
* V(a) is random with values in M,
* its probability distribution is constructed using MaxEnt
* the support of this probability distribution is the subset of M, satisfying almost surely

the constraint VT (0)QV(a) = I
R (]
== NPM constructs the probability measure of V(o) on a compact Stiefel manifold

C. Soize and C. Farhat, “A Nonparametric Probabilistic Approach for Quantifying Uncertainties in Low- and High-Dimensional
Nonlinear Models,” IINME, Vol. 109, pp. 837-888 (2017)



NPM for Modeling and Quantifying MFU — Randomization of the ROB

e Parameterization of a Stiefel manifold

U(a) € RVX" o € R

e 1 e

Z(0o) =U(0) = 5V (VI oU(a) + U ) QV)
o pd

vTiov =1, iV(Oﬁ) = (V+sZ(a)) (I, +s°Z" (0) 0Z(w))
SN VT (a)QV(a) =1,

~1/2

wheree, < s<1, 0< ¢, <1, and s is an element of the hyperparameter set o

* How to construct o with n, < Nn and how to build U(a) ?



EE————
NPM - Dimensionality Reduction of the Hyperparameter Space

* Convolution autoencoders with ng filters in the input layer

Layer 1 Layer n+m
Y Layer 2 Y
A
Ul Ui Un Layer n Layer n+1
U > > > F > > > U
N
G (U) v H(F)
Output of the smallest
Y layer is the reduced
A\ order model
A Ng
< >
n

a = (s,F)ofdimensionl+ny =1+ 2n

wmp U = H(F)




NPM for Modeling and Quantifying MFU — Model Hierarchy

* Construction of the corresponding stochastic HPROM (SHPROM)

* HDM

* PROM

M ()ii(t; 1) —

M, ()5 (1:1) —

£ (s ), ()5 )

0y (11 1) E(0): ) =

* HPROM: deterministic RT-DTP

M, (u)y(t: ) —

£ (), E(2) 1) =

* SHPROM: stochastic, RT-DTlas V =V(a)

= f ()

£ (1)

()

M, (o )§ (7, 065 1)

Mr(a;/l) —
2(1)s1) =

£ (y (2, 06 ),

—E"(y(t,060),2(t), 051) = f

Sambling
snapghots

SYD
ECBW

Y



NPM for Modeling and Quantifying MFU — Enrichment with Data

* Observables (vector-valued Qol): o(t;u) = (01 (t;u), o2(t;u), -+, oy, (t:u))
* Real-time stochastic predictions using the parametric SHPROM: o(7;u)

A)

1 WY
Jmean((x) — Z/
10

Cmean (1) i—1

. 2
o™t (t:0') —E (o0 (r,(x;y’))H dt

A

| n ‘ .
cnen (4 -+ ) = £ 7 o (caf) |
1=
1 Mwopr . . 12
Jaa(a) = Z/ yret (r;yl) —v(r?oc;,u‘) ) dt
[

Cstd (H) i—1“10

U L T et ey |2
Csid | M , H ) = 'Zl ffo HV (l‘,‘U)H dt
=

* Norm: Wasserstein distance due to its convexity w.r.t translation and dilation of signals
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NPM for Modeling and Quantifying MFU — Enrichment with Data

* Data types

* if only high-dimensional data is generated
o 0™ corresponds to the Qols predicted using the u-parametric HDM
NPM models and quantifies MFU due to projection-based model order

reduction (PMOR)

11—

* if experimental data is available
o if this data is nonstatistical, 0'
o if this data is statistical, 0! = E (0°*P)

NPM models and quantities MFU inherited by the HDM and MFU due to
nonlinear PMOR
o multi-modal data assimilation and regularization (see next slide)

f__ OSXP

* |dentification of NPM’s vector-valued hyperparameter a (o, ..., o,,) and model update

o™ = argminJ () | wme | M, () — E7(y: %) = () | wms RT.DT




NPM for Modeling and Quantifying MFU — Enrichment with Data

* Multi-modal data assimilation and regularization
+ in the presence of statistical or nonstatistical experimental data, o™ = {OeXp,
* in this case, the following composite loss function is appropriate
J((I,) = Wmeean(a) ‘I'Wsttd(a) + (1 —Wm — Ws)Jorth(a)a wm 2> 0, wy 2> 0, (Wm ‘|'ws) <1

where

Joun(0) = E (]| (1= V(e}V (o)) ™M *)

* can be generalized to data of different modalities, including pictures, texts, etc.

NPM extracts knowledge and/or information from multi-modal data via the

solution of the reduced-order inverse problem o’ = argminJ (o) and infuses it
o

into a stochastic reduced-order model — namely, the SHPROM — via the randomized
and hyperparameterized ROB V(a): continuous and transfer learnings



Ground Vibration Analysis of the Flying Wing mAEWingl

* Eigenvalue analysis of the mAEWIing1l (replica of an X56 type of aircraft made of a
composite material and fabricated at the University of Minnesota)

e ground vibration tests

0.844m

3.05m

Aireraft f1 (Hz) f2 (Hz) fa (Hz) f1 (Hz) fs (Hz) fe (Hz)
[DM-1 [DM-2 [DM-1 [DM-2 IDM-1 IDM-2 [DM-1 IDM-2 [DM-1 [DM-2 [DM-1 [DM-2

Skoll 7.23 7.23 R.17 ®.14 — — 15.58 15.58 — — 26.10 26.02

Hati 7.95 7.96 — — — 13.83 15.96 15.97 — — 32.0 31.9
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Ground Vibration Analysis of the Flying Wing mAEWingl

* Sample application: eigenvalue analysis of the mAEWIing1l (replica of an X56 type of
aircraft made of a composite material and fabricated at the University of Minnesota)

* simplified finite element (FE) model (NASTRAN) of dimension N = 4,146

* sources of modeling error (MFU) &
o stick model o
€%
o lumped masses

o homogenized composite materials
o undamped model

]
o
o~
[y
]
-1

Flexible mode

Frequency f (Hz) | 7.94 | 10.29 | 15.21 | 19.71 | 30.16 | 32.54 | 39.21

e SHPROM of dimension n =10



Ground Vibration Analysis of the Flying Wing mAEWingl

 Sample application: eigenvalue analysis of the mAEWingl

» confidence intervals constructed with 100 samples corresponding to the quantiles 0.98
and 0.02 —that is, for P, = 98%

HPROM
35 | © SHPROM
- EXP.

P Lad
L —
-
—a—
—e

* deterministic HPROM (RT-DTP)
captures well the mean values

Sy » SHPROM (RT-DTI) captures well the
‘ statistical fluctuations

M
=
T

=
L
1
i3

Eigenfrequency (Hz)

[—
=
T

LN
1

-

Figenfrequency rank



Early DTI at Stanford for Paving the Way to Autonomy

* Quadrotor as a fencing opponent
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Crash Analysis of the Front Bumper of the 2013 Honda Accord EX-L

e HDM, HPROM, and NPM settings
* nonlinear kinematics and nonlinear material laws foe Qe -
* 36,819 shell elements; 37,750 nodes; 37,750 multi-point 5 == n Ry
constraints; and N = 226,500 dofs i, |
* explicit transient dynamic analysis
* n=20<«226,500; |’£| =314 «< 36,819
* HDM on 48 cores: 2,704 secs
* HPROM on 1 core: 4.6 secs
wall-clock speedup factor = 588 A -
cpu-time speedup factor = 28,216 N Mesh (HDM)

'W] =09,Q:M
* Ny =212; np =61
°nS=3O;PC=95%

e optimizer: MATLAB’s fmincon Reduced mesh (HPROM)



Crash Analysis of the Front Bumper of the 2013 Honda Accord EX-L
NERE NNSSESS

S ANENSN
=3




Crash Analysis of the Front Bumper of the 2013 Honda Accord EX-L

x-Displacement (m)
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I I I |
[ |SHPROM realizations with pc=0.95
— HDM target solution
i s HPROM solution ]
—— SHPROM mean
1 | 1 1 | 1 |
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Time (s) %107
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Adapted from "X-47B UCAS Aviation History Under Way" by Northrop Grumman,
Retrieved from https://www.youtube.com/watch?v=WC8U5_4lo2c Y -



S \ — S i -

Adapted from==lynx Hellcop Qperaf it Developmem!“\by Prism Defence,
Retrieved from https://www.youtu h7v bC2XlGMI2kM&t -/8s
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Model Predictive Control (MPC, with M. Pavone)
* Principled method in optimal control theory r

» Utilizes a computational model to optimize a system
and predict its future behavior (OCP) o

* Leverages state measurements to incorporate
feedback into the system

* Accounts for state and control constraints and
therefore may enable autonomous abort, and
operation at performance limits

t

<

-~ 7 « Re-planned Path
~

Planning Time Horizon

»

! 4
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Two-Level Digital Twin

RT-DTI
for MPC of ACL

RT-DTP
for aerodynamic
state and loads

predictions




Skywalker 1720 — First CFD-Based HDM and Associated PROM
* Hobby UAV for a first-person view (FPV) payload

* FE structure model
* 6-DOF rigid body
e 4 control surfaces and 4 joint elements
* CFD-based fluid model for verification simulations

* RANS; Spalart-Allmaras turbulence model
* 2,930,804 grid points wm=p Ncpp = 17,584,824
e free-stream: V, =15m/s, « =1.789°, H =304.8 m

* Linearized PROM for fluid-structure-control (RT-DTP) |
* frequency domain

=

e

B, = [U Mkr} rad s—1; training at 10 equally-spaced
frequencies == 189 solution snapshots

e PROM dimension: Ncrp = 88



Skywalker 1720 — Simulation of Flight Dynamics and Control

* Planned aircraft descent simulated using a couped fluid-structure-control HDM
* Objective: correct the following initial line-up error using the two-level DT

6uR(O):[]I 0}53;3(0):[1.0 —1.0 1.0}111,

30R.,(0)=1.24x 10 °°s™ " §6cs .(0) = —0.307°

* In addition to the initial line-up error, the following is inevitable
e disturbances from linearization and PMOR errors
 disturbance from nonzero lateral force, roll, and yaw moments, due to

round-off errors (despite CFD mesh symmetry)

 Verification of two-level DT
* closed-loop: nonlinear DTP for flight dynamics; two-level DT for MPC
* open-loop: RT-DTP for flight dynamics; two-level DT with RT-DTP for states and loads
predictions



Skywalker 1720 — Simulation of Flight Dynamics and Control: Results

* Longitudinal components of the dynamic state of the UAV

Position Error, (m)

Longitudinal Position

0.4

dx Closed-loop (DTP)
dz Closed-loop (DTP)
dx* Open-loop (RT-DTP)
dz* Open-loop (RT-DTP)

10 20

Time, (s)

Longitudinal Velocity

m)

[—

—0.151

Velocity Error, (

0. 204

d1 Closed-loop (DTP)
#2 Closed-loop (DTP)
di* Open-loop (RT-DTP)
4:* Open-loop (RT-DTP)

—{).251

0 10 20

Time, (s)

£}
—0.41

e 04

)

o

S

—

O 0.

e

(NN

c

Q

e

m —).51

4

Q

(a4
=1.0
—-1.2

Longitudinal Rotation

88, Closed-loop (DTP)
065, , Open-loop (RT-DTP)

10 20

Time, (s)

0.504

[

=]

Rotation Rate Error, (degree/s)

Longitudinal Rotation Rate

(). 501

—1.004

38py Closed-loop (DTP)
s, , Open-loop (RT-DTP)

0 10 20

Time, (s)
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Skywalker 1720 — Simulation of Flight Dynamics and Control: Results

* Line-up error corrections and disturbance eliminations: Q-Criterion contours colored by ||v||
Time: 0.000000 :

RT-DTI component Wall clock time (msecs) Number of calls

PROM, state-estimator 6.7x1072 2,490
OCP 8.4 250



Embedded RT-DTI

IDIOT OUTSIDE

( DTinside >




s
Conclusions

 Digital twins (DTs) of the instance (DTI) and aggregate (DTA) types are the real thing:
depending on the physical asset/application, their construction can be challenging
and may require starting from a digital twin prototype (DTP)

* Pure DTPs are marketing ploys: they may be digital, but are rarely the real McCoy

* The proposed NPM-based approach for building DTIs and DTAs starts from a DTP: through
a number of learning steps, it then transforms the DTP into a RT-DTP; then into a DTI; and

eventually into a DTA , ,
Continuous learning from

Learning high-dimensional Learning low-dimensi@hal 9 data @nultiple@odalities
solution snapshots = prmecﬁi quantiﬁs P N and transfer learning

Parametric, PROM ,/\ PR@V
high-fidelity, i U (RTMIRT-DIA)
HDM | )

> a N

A g - » - Qg d B 4 ) d B & P a B
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