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Digital What?

everyone claims to have/do 
the Digital part

few talk about the Twin part …



• Digital twin prototype (DTP)
• design, analyses, and processes to realize

a physical product           rebranding of old 
CAD and modeling and simulation

• innovation: real-time (RT) counterpart (RT-DTP) 
for accelerating the objectives

• Digital twin instance (DTI)
• digital twin of a specific instance of the

product, after it is manufactured
• learn from data to perform model updating

• Digital twin aggregate (DTA)
• aggregation of DTIs, allowing for larger 

sensor datasets and therefore enhanced 
learning and prognostic processes 

• Industry 4.0
• crisis management, predictive maintenance, quality control, warranty optimization

Digital Twins (DTs)

digital replica

physical system
sensor data 

for model updating

surrogate modeling for 
tractability and/or 

real-time performance



SYSTEM
input

m = [m1, …, mp]

output

𝑦 = [𝑦1, … , 𝑦p]

• External representation

SYSTEM
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• Internal representation

𝑦 = 𝑓 m via the post-processing of a physics-
based, high-fidelity model of the system

• Examples and characterization

• projection-based reduced-order models 
(PROMs), simplified-physics models

• many QoIs, determined via exploration

• QoIs can be spatio-temporal fields

• real-time surrogate models of systems

• Examples and characterization

• Gaussian processes (GPs), regression 
artificial neural networks (ANNs)

• a few, pre-determined, scalar 
quantities of interest (QoIs)

• real-time surrogate models of output(s) 

Data-Driven Surrogate Modeling



• How to identify the QoIs (rare events, 
failure modes, multiple scales, …)?

Purely Data-Driven vs Physics-Based Data-Driven Computational Modeling

• Crack nucleates at the microscale, but online 
monitoring is performed at the macroscale 

QoIs? amount of data? model reliability?

• 𝑇 < 𝑇𝑐𝑟
• ∇𝑇 < ∇𝑇𝑐𝑟
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Surrogate Modeling



• In general, there is not much information regarding how accurate a DT is, compared to 
its physical counterpart            

the biggest concern that most business owners interested
in this technology have is the risk of misrepresenting the
physical asset they want to replicate using a DT

Danger

• Requirements for twinning

• high-fidelity modeling, whether data-driven or physics-based-model-driven (DTP)

• modeling and quantifying uncertainty – and particularly model-form uncertainty (MFU)

• (non parametric) model updating



• In general, once a model must be considered for any purpose, MFUs is unavoidable

• lack of knowledge of the true physics underlying the problem of interest

• omission or truncation of modeling details, (e.g. in computational structural dynamics: 
constitutive, multi-scale, friction, homogenization, and free-play modeling errors)

• Less studied in literature on uncertainty quantification (UQ) than parametric uncertainty

Model-Form Uncertainty (MFU)



• The typical method for UQ involves stochastic computations (e.g. Monte Carlo 
realizations): thus, it calls for surrogate models in order to achieve computational 
tractability            additional MFU

• In the case of PROMs

• adaptive vs nonadaptive training of a reduced-order basis (ROB)

• finite sampling during training of a ROB

• projection error due to truncation

• modeling error due to adaption of a PROM

UQ Using Surrogate Models

• In the case of regression of QoIs (response surfaces, GPs,  or ANNs)

• passive vs active training

• Gaussian kernel (GP), network architecture (ANN)

• amount of training data

• local optimum of the loss function (ANN)
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UQ and Model Updating (and thus Digital Twinning) – KPIs

• For a given probability 𝑷𝒄, compute a confidence region with the following property

quantile for 𝑃𝑐



target response

model-based response before UQ/updating

upper/lower envelope

confidence region (𝑃𝐶 )

the updated computational model is 
more accurate/predictive than its 
non updated counterpart for the 
sensor data; but of course, interest
is in most if not all data

UQ and Model Updating (and thus Digital Twinning) – KPIs

• For a given probability 𝑷𝒄, compute a confidence region with the following property

quantile for 𝑃𝑐
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DT Concept for Structural Health Monitoring (with Autodesk)

June 14, 2023

September 13, 2023

(𝑃𝐶 = 99%)  



DT Concept for Structural Health Monitoring (with Autodesk)

June 14, 2023

September 13, 2023

• Preventive maintenance 
(more economical than
scheduled maintenance)

• Early warning system for 
damage detection

(𝑃𝐶 = 99%)  



• Parametric, nonlinear, high-dimensional finite element (FE) model (HDM) of dimension 𝑵

• Nomenclature
• 𝜇 ∈ D     : vector of design parameters in a design 

parameter space of moderate dimension

• 𝑢 ∈ : semi-discrete high-dimensional solution

• a dot          : designates a time derivative

• 𝑓int ∈ : semi-discrete vector internal forces

• 𝑓ext ∈ : : semi-discrete vector of source terms

• : vector of       internal variables

Backdrop Computational Models – DTP

DTP             supercomputing



• Corresponding parametric PROM of dimension 𝒏 ≪ 𝑵

• Nomenclature 

• 𝑦 ∈ : reduced-order vector of generalized coordinates

• Observation/drawback

• complexity of the reduced-order (projected) quantity                                 scales not only 
with the reduced dimension 𝑛, but also with the large dimension 𝑁 ≫ 𝑛

Backdrop Computational Models – PROM (Entry-Level)

:



Backdrop Computational Models – HPROM/RT-DTP

• Corresponding parametric hyperreduced PROM (HPROM) of dimension 𝒏 ≪ 𝑵
• ECSW (C. Farhat et. al., 2014): energy-conserving sampling and weighting

• ECSW computes the cubature parameters               and                  by minimizing a loss function 
based on the solution snapshots computed for constructing the ROB 𝑉

• the complexity of the ECSW approximation is independent of the large dimension 𝑁
• ECSW preserves the Lagrangian structure of second-order dynamical systems
• ECSW preserves the numerical stability properties of the preferred time-integrator



• Simulation of the underbody blast of an ARES tank

• HDM: J2 plasticity; nonlinear kinematics, large deformation, and contact; 336,844 
elements (bricks, shells, rigid beams); 346,896 nodes; and 𝑵 = 2,043,672 degrees of 
freedom (dofs)

• 20 kg TNT (passenger side, wheel assembly) modeled using CONWEP module 

• explicit transient dynamic analysis

• 𝒏 = 3𝟏 ≪ 2,043,673; |    | = 697 ≪ 336,844

Sample Performance of a Nonlinear HPROM/RT-DTP

CAD Mesh (HDM) Reduced mesh (HPROM)



• Simulation of the underbody blast of an ARES tank

Model Wall clock time Speedup

HDM (2,043,673) – 250 cores 1.728 x 105 secs (48 hrs) wall clock time: 8,228

HPROM (31) – 1 core 21 secs CPU time: 2,057,142

a HPROM is a good candidate for constructing a RT-DTP 

Sample Performance of a Nonlinear HPROM/RT-DTP



• Typical approach for performing UQ and last-generation approach for model updating

• randomize/vary  the coefficients of the PDE – i.e. the parameter 𝜇 = (𝜇1, 𝜇2, … , 𝜇𝑛𝜇)

𝑢𝑒𝑥𝑝

𝑢(D) 𝑢(D’)

performing model updating is difficult 

• NPM (Soize and Farhat, 2017): randomizes the subspace in which 𝒖 is approximated

• expands the scope of the approximation subspace without increasing its dimension

C. Soize and C. Farhat, “A Nonparametric Probabilistic Approach for Quantifying Uncertainties in Low- and High-Dimensional 
Nonlinear Models,” IJNME, Vol. 109, pp. 837-888 (2017)

Nonparametric Probabilistic Method (NPM) for MFU 



NPM for Modeling and Quantifying MFU – Randomization of the ROB

• NPM randomizes the subspace in which the solution is approximated
• operates at the level of the HPROM instead of that of the HDM,  in order to achieve 

computational tractability
• substitutes the deterministic ROB 𝑉 with a stochastic counterpart 𝐕 α , where                     
α = (α1, α2, … , αnα) is a vector-valued hyperparameter            hyperparameterized
stochastic ROB and HPROM

• Desired properties of the stochastic ROB
• 𝐕 α is global and therefore independent of m
• 𝐕 α is random with values in M𝑁𝑛
• its probability distribution is constructed using MaxEnt
• the support of this probability distribution is the subset of M𝑁𝑛 satisfying almost surely 

the constraint

NPM constructs the probability measure of 𝐕 𝛂 on a compact Stiefel manifold 

𝐕𝑇 α 𝑄𝐕 α = 𝐈𝑛

C. Soize and C. Farhat, “A Nonparametric Probabilistic Approach for Quantifying Uncertainties in Low- and High-Dimensional 
Nonlinear Models,” IJNME, Vol. 109, pp. 837-888 (2017)



• Parameterization of a Stiefel manifold

where 𝜀𝑜 ≤ 𝑠 ≤ 1,  0 ≤ 𝜀𝑜 ≤ 1, and 𝑠 is an element of the hyperparameter set a

• How to construct a with 𝒏𝛂 ≪𝑵𝒏 and how to build 𝐔 𝛂 ?

T𝑉

𝐕𝑇 𝛼 𝑄𝐕 𝛼 = 𝐈𝑛

𝑉𝑇𝑄𝑉 = 𝐼𝑛

𝑉

NPM for Modeling and Quantifying MFU – Randomization of the ROB



NPM – Dimensionality Reduction of the Hyperparameter Space

• Convolution autoencoders with 𝒏𝒔 filters in the input layer

𝑁

𝑛

𝑛𝑠

𝑈1 𝑈𝑖 𝑈𝑛
U U

G(U) H(𝐹)

α = 𝑠, 𝐹 of dimension 1 + 𝑛𝐹 ≈ 1 + 2𝑛

𝐔 = H(𝐹)



• Construction of the corresponding stochastic HPROM (SHPROM)

• HDM

• PROM

• HPROM: deterministic RT-DTP

• SHPROM: stochastic, RT-DTI as 𝐕 = 𝐕(𝛼)

NPM for Modeling and Quantifying MFU – Model Hierarchy

Sampling
snapshots

SVD

ECSW



NPM for Modeling and Quantifying MFU – Enrichment with Data

• Observables (vector-valued QoI):

• Real-time stochastic predictions using the parametric SHPROM:

• Norm: Wasserstein distance due to its convexity w.r.t translation and dilation of signals                                                         

• Loss function:                                                                    ,  



NPM for Modeling and Quantifying MFU – Enrichment with Data

• Data types
• if only high-dimensional data is generated

o corresponds to the QoIs predicted using the 𝜇-parametric HDM
NPM models and quantifies MFU due to projection-based model order 
reduction (PMOR)

• if experimental data is available
o if this data is nonstatistical,
o if this data is statistical,

NPM models and quantities MFU inherited by the HDM and MFU due to
nonlinear PMOR

o multi-modal data assimilation and regularization (see next slide)

• Identification of NPM’s vector-valued hyperparameter 𝜶 = and model update 

RT-DTI



• Multi-modal data assimilation and regularization

• in the presence of statistical or nonstatistical experimental data,

• in this case, the following composite loss function is appropriate

where

• can be generalized to data of different modalities, including pictures, texts, etc.

NPM extracts knowledge and/or information from multi-modal data via the 
solution of the reduced-order inverse problem   ; and infuses it

into a stochastic reduced-order model – namely, the SHPROM – via the randomized 
and hyperparameterized ROB V 𝛼 : continuous and transfer learnings

NPM for Modeling and Quantifying MFU – Enrichment with Data



Ground Vibration Analysis of the Flying Wing mAEWing1

• Eigenvalue analysis of the mAEWing1 (replica of an X56 type of aircraft made of a 
composite material and fabricated at the University of Minnesota)
• ground vibration tests



• Sample application: eigenvalue analysis of the mAEWing1 (replica of an X56 type of 
aircraft made of a composite material and fabricated at the University of Minnesota)

• simplified finite element (FE) model (NASTRAN) of dimension 𝑵 = 4,146

• sources of modeling error (MFU)

o stick model

o lumped masses

o homogenized composite materials

o undamped model

• SHPROM of dimension 𝒏 = 10

Ground Vibration Analysis of the Flying Wing mAEWing1



• Sample application: eigenvalue analysis of the mAEWing1

• confidence intervals constructed with 100 samples corresponding to the quantiles 0.98 
and 0.02 – that is, for 𝑃𝐶 = 98%

• deterministic HPROM (RT-DTP) 
captures well the mean values

• SHPROM (RT-DTI) captures well the 
statistical fluctuations

Ground Vibration Analysis of the Flying Wing mAEWing1



Early DTI at Stanford for Paving the Way to Autonomy 

• Quadrotor as a fencing opponent



• HDM, HPROM, and NPM settings
• nonlinear kinematics and nonlinear material laws
• 36,819 shell elements; 37,750 nodes; 37,750 multi-point 

constraints; and 𝑵 = 226,500 dofs
• explicit transient dynamic analysis
• 𝒏 = 20 ≪ 226,500; |    | = 314 ≪ 36,819
• HDM on 48 cores: 2,704 secs
• HPROM on 1 core: 4.6 secs           

wall-clock speedup factor = 588
cpu-time speedup factor = 28,216

• 𝑤𝐽 = 0.9; 𝑄 = 𝑀
• 𝒏𝛂 = 212; 𝒏𝑭 = 61

• 𝑛𝑠 = 30; 𝑃𝐶 = 95%
• optimizer: MATLAB’s fmincon

Crash Analysis of the Front Bumper of the 2013 Honda Accord EX-L 

Mesh (HDM)

Reduced mesh (HPROM)



Crash Analysis of the Front Bumper of the 2013 Honda Accord EX-L 



Crash Analysis of the Front Bumper of the 2013 Honda Accord EX-L 

𝑛α = 212; 76 hrs on 48 cores 𝑛𝐹 = 61; 3 hrs on 48 cores



Autonomous Carrier Landing (ACL) Systems





• Principled method in optimal control theory

• Utilizes a computational model to optimize a system 
and predict its future behavior (OCP)

• Leverages state measurements to incorporate 
feedback into the system

• Accounts for state and control constraints and 
therefore may enable autonomous abort, and 
operation at performance limits

Model Predictive Control (MPC, with M. Pavone)



Two-Level Digital Twin



• Hobby UAV for a first-person view (FPV) payload

• FE structure model

• 6-DOF rigid body
• 4 control surfaces and 4 joint elements

• CFD-based fluid model for verification simulations

• RANS; Spalart-Allmaras turbulence model
• 2,930,804 grid points            𝑵𝐂𝐅𝐃 = 17,584,824
• free-stream: 𝑉∞ = 15 m/s, 𝛼 = 1.789°, 𝐻 = 304.8 m

• Linearized PROM for fluid-structure-control (RT-DTP)

• frequency domain

; training at 10 equally-spaced

frequencies            189 solution snapshots

• PROM dimension: 𝒏𝑪𝑭𝑫 = 88

Skywalker 1720 – First CFD-Based HDM and Associated PROM 



• Planned aircraft descent simulated using a couped fluid-structure-control HDM

• Objective: correct the following initial line-up error using the two-level DT

Skywalker 1720 – Simulation of Flight Dynamics and Control 

• In addition to the initial line-up error, the following is inevitable
• disturbances from linearization and PMOR errors
• disturbance from nonzero lateral force, roll, and yaw moments, due to 

round-off errors (despite CFD mesh symmetry)

• Verification of two-level DT
• closed-loop: nonlinear DTP for flight dynamics; two-level DT for MPC
• open-loop: RT-DTP for flight dynamics; two-level DT with RT-DTP for states and loads 

predictions



Skywalker 1720 – Simulation of Flight Dynamics and Control: Results 

• Longitudinal components of the dynamic state of the UAV



• Line-up error corrections and disturbance eliminations: Q-Criterion contours colored by 𝒗

Skywalker 1720 – Simulation of Flight Dynamics and Control: Results 

RT-DTI component Wall clock time (msecs) Number of calls

PROM, state-estimator 6.7×10-2 2,490

OCP 8.4 250



Embedded RT-DTI 



Conclusions 

• Digital twins (DTs) of the instance (DTI) and aggregate (DTA) types are the real thing: 
depending on the physical asset/application, their construction can be challenging
and may require starting from a digital twin prototype (DTP)

• Pure DTPs are marketing ploys: they may be digital, but are rarely the real McCoy

• The proposed NPM-based approach for building DTIs and DTAs starts from a DTP: through 
a number of learning steps, it then transforms the DTP into a RT-DTP; then into a DTI; and 
eventually into a DTA

Parametric, 
high-fidelity, 

HDM

Learning high-dimensional
solution snapshots

PROM

Learning low-dimensional
projected quantities 

HPROM
(RE-DTP)

Continuous learning from
data of multiple modalities

and transfer learning

SHPROM
(RT-DTI/RT-DTA)
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