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Preamble and Disclaimer

The use of Machine Learning (ML) for Combinatorial Optimization (CO)
problems has been ubiquitous in the last 5 years at the very least.

This is due to the incredible success of ML, especially deep learning, in
beating human capabillities in image recognition, language processing and
sequential games.

Those successes led to ask natural questions about using modern statistical
learning in other disciplines, Combinatorial Optimization being one of them.

The new, very recent frontier of Generative Artificial Intelligence is yet another
story and is not covered by this talk.



Discrete Optimization: where?
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Discrete Optimization: how?
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Slide courtesy of E. Khalil



Outline

The talk is divided In two parts:

 Part 1 sets the ground of what using ML for Combinatorial Optimization
means and discusses some of fast-growing literature in a methodological
fashion.

o Part 2 introduces a business perspective on how ML could successfully
help Combinatorial Optimization on applications by using an example in
logistics.



Part 1: ML for Combinatorial Optimization



Schematic Overview

Slide courtesy of N. Yorke-Smith
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Obijective value
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Too long
e Expert knowledge of how to make decisions
e Joo expensive to compute

e Need for fast approximation




Too heuristic
 No idea which strategy will perform better
e Need a well performing policy

e Need to discover policies




Question

e Can Machine Learning methods as Imitation Learning,
Reinforcement Learning and all the recent powerful
techniques (e.g., Deep Learning) and architectures (e.g.,
Graph Neural Networks) help Combinatorial Optimization
algorithms by dealing with the issues above (“too slow”
and / or “too heuristic”)?



Requirement

e We want to keep the guarantees provided by exact CO
algorithms (feasibility, sometimes optimality).



Random Images
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Random Instances
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Imitation Learning in anutshel

e (Generally speaking, Machine Learning is a collection of technigques for

e |earning patterns in or
e understanding the structure of data,

e often with the aim of performing data mining, i.e., recovering
previously unknown, actionable information from the learnt data.

e Typically, in ML (IL in particular) one has to “learn” from data (points in
the so-called training set) a (nonlinear) function that predicts a certain
score for new data points that are not in the training set.

e Each data point is represented by a set of features, which define its
characteristics, and whose patterns should be learnt.

e The technigques used in ML are diverse, most recently artificial (deep)
neural networks algorithmically boosted by first order optimization
methods like gradient descent, etc.



Deep Learning in anutshel
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Reinforcement Learning in anutshell

Agent

m(als)
State Reward Action
Stiq Ay
Environment
p(s',rla, s)

Markov Decision Process for Reinforcement Learning



_earning Methods

Demonstration

An expert/algorithm provides a
policy

Assumes theoretical / empirical
knowledge about the decisions

Decisions are too long to compute

Supervised (imitation) learning

Experience

Learn and discover new policies
(hopefully better)

Unsatisfactory knowledge (not
mathematically well defined)

Decisions are too heuristic

Reinforcement learning



Demonstration

N

%l/’ action ~—

Decision”? min distance

‘WO action —

 Approximating strong branching
[Marcos Alvarez et al. 2014, 2016, 201 7][Khalil et al. 2016]

 Approximating lower bound improvement for cut selection
[Baltean-Lugojan et al. 2018]

e Approximating optimal node selection
[He et al. 2014]



EXperience

. . 7Tml N\
Decision? = qction max return

e |earning greedy node selection (e.g., for TSP)
[Khalil et al 201 7a]

e |Learning TSP solutions
[Bello et al. 2017][Kool and Welling 2018][Emami and Ranka 2018]



Demonstration vs Experience

Not mutually exclusive

Supervised Reinforcement
* Cannot beat the expert (an e Reinforcement can potentially
algorithm) discover better policies
— only interesting if the
approximation is faster e Harder, with local maxima

(exploration difficult)
 Can be unstable

_ e Need to define a reward
 Cannot cope with equally good

actions

Better combined!



Algorithmic Structure

® How do we build such algorithms? How do we mix CO with ML?

® How do we keep guarantees provided by CO algorithms
(feasibility, optimality)?



End to End Learning

Problem
definition

ML » Solution

e |Learning TSP solutions
Bello et al. 201 7][Kool and Welling 2018][Emami and Ranka 2018]
Vinyals et al. 2015][Nowak et al. 2017]

 Predict aggregated solutions to MILP under partial

information
[Larsen et al. 2018]

e Approximate obj value to SDP (for cut selection)
|[Baltean-Lugojan et al. 2018]



Learning Properties

Prob.le.m Decision Solution
definition

>

e Use a decomposition method
[Kruber et al. 2017]

e Linearize an MIQP
[Bonami et al. 2018]

e Provide initial cancer treatment plans to inverse
optimization
[IMahmood et al. 2018]



Learning Repeated Decisions

* | earning where to run heuristics Iin

B&B
[Khalil et al. 2017b] iz OR »/Solution

definition

\

* | earning to branch .
[Lodi and Zarpellon 2017] (survey)

State Decision

* | earning gradient descent
e.g. [Andrychowicz et al. 2016]

* Predicting booking decisions under

imperfect information

[Larsen et al. 2018] just a matter
of viewpoint

* |earning cutting plane selection
[Baltean-Lugojan et al. 2018]



Decision-aware learning
|

Prob.le.m Decision Solution
definition

* Quadratic Programming
[Amos and Kolter 2017]

* Novel loss functions development
[EImachtoub and Grigas 2022] [Mandi et al. 2022]

* Perturbation or penalization methods
[Mandi and Guns 2020] [Blondel et al. 2020] [Wilder et al. 2019]







Business Applications

* Many businesses care about
solving similar problems
repeatedly

e Solvers do not make any use of
this aspect

* Power systems and market
[Xavier et al. 2019]

e Schedule 3.8 kWh ($400 billion)
market annually in the US

e Solved multiple times a day

e 12X speed up combining ML
and MILP




Learning to repeatedly solve routing problems

M. Morabit, G. Desaulniers, A. Lodi, Learning to repeatedly solve routing problems, arXiv:2212.08101, 2022.

Slides based on the PhD defense of M. Morabit



Accelerate the reoptimization of repeatedly solved problems after a

slight change in the problem data
e ———

@ A focus on the Capacited Vehicle Routing Problem (CVRP)
Costa et al. 2019, Pessoa et al. 2020

@ Locations of the clients are the same

@ Slightly different demands



@ P,: a problem instance and its solution &,

@ P,: obtained from P, after some changes of the client
demands

Solution of P, Solution of P,,



Solution of P, Solution of P, Edges to predict

Objective

Instead of solving P,, from scratch, identify and fix the parts of S,
that have a high probability of remaining unchanged




Data collection

o Let £E(S) denote the set of edges of a solution S

@ Given a tuple of original and modified instances with their
solutions (P,, S0, Pm, Sm)
A labeled dataset D = {(xe, Ve)|Ve € E(S,)} is built



Data collection - Labels

The labels are assigned by checking the overlapping edges between
S, and S,

, ee€E(S,). 6
0 otherwise (So) (6)

"

Ve {1 if e € E(So) N E(Sm)



Data collection - Features

Features x,

For each edge e = (i,j) in S
® (x,y) coordinates of nodes i and j
@ C. edge cost
old and new demands of nodes i and j

=
@ distances between the depot and nodes / and j, respectively
@ binary value indicating if the edge is a depot edge

Q

binary value indicating whether the client / or j, or both, have
a changed demand

@ The rank of i with respect to j (and vice versa) according to
the neighbor distances




ML-based edge fixing

Given (Po,So, Pm)

@ After training, the predictive model is used to obtain
predictions

@ For each edge in the original solution, the edge variable is set
to 1 depending on the predictions

xe=1, VYeecE(S,)|je=1. (7)

————————————————————————————————————————————————————




Infeasibility case

@ Fixed sequences of edges exceeding vehicle capacity )

@ Let p. be the probability estimate of edge e

@ For each fixed sequence exceeding the capacity
= Unfix the edge with the lowest pe

Infeasibility check

1: for each sequence s = (vj,vy,..., V) do
2 if Y1 d, > Q then

3: e = argminee,:-(p)f)e

4 Ye =0

5: end if

6: end for




Network contraction

Edges to fix Edges after contraction

110 — 54 nodes



Network contraction

For each sequence s = (vj, vo,..., V) with
s| >3 :
@ Remove all intermediate nodes {\" :.'L

V2y vy Vis|—1 Y:f .
o Add the edge epew = (v1, Vs|) V\ L
o Update the cost ¢, = ) _ocg(s) Ce . \T
@ Update the demands by adding ( )
S d -

@ Fix the new edge x.,., =1




CVRP instances

@ X-benchmark instances from the CVRPLIB (Uchoa et al.

2017)

@ [ he instances have different characteristics

I ————.

Instance name

Depot
position positioning distribution

Client

Demand

X-n101-k25
X-n106-k14
X-n110-k13
X-n125-k30
X-n129-k18
X-n134-k13
X-n139-k10
X-n143-k07

m o om0 0 m A

RC
C

A
A AR OX

11 — 100]
150 — 100]
5 — 10|
Quadrant
11— 10|
Quadrant
5 — 10|
1 — 100]




CVRP instances - demand modifications

For each instance
o N.% of the client demands are changed, N. = {10, 20, 30}

@ The new demand of each client i/ is chosen randomly in the
interval [d, — Ay, d;i + Ad]

————————————————————————————————————————————

Demand Ay (interval size)
distribution S M L
1 — 100] 5 10 15
50 — 100} 5 10 15
5 — 10| 1 2 3
Quadrant 5 10 15
1 — 10] 2 3 4

= 9 different scenarios (10% Small, 10% Medium, etc.)



Data generation

For each original instance and for each scenario

@ 100 modified instances are generated
o 95 for the ML phase
e 5 remaining for the optimization phase

o Each instance is solved using FILO (Fast Iterated Localized
Search Optimization - Accorsi and Vigo 2021)

@ One ML-model is trained for each instance and scenario
= (Artificial) Neural Network models




The computational investigation aims at answering two questions:

© Can we effectively learn the structure of the solution of the
“master”, and use that structure to devise faster algorithms?

o Of course, since we are learning probabilistically, the algorithm
will be heuristic. But will it be a good one?

@ Is there value in trying to learn the difference between
solutions of slightly modified instances?

o Maybe it would be better to just learn the solution itself,
especially considering that the instances are very similar, thus
we are really within distribution!

o We compare with Dual-Aspect Collaborative Transformer
algorithm (DACT - Ma et al. (2021))




Computational results - N. = 10%

Interval P, S, cost sim(S,,S,) ML model metrics Edge-fixing Exact B&P DACT
TNR TPR Accuracy Cost Time (s) Gap Cost Time (s) Cost Gap
X-n101-k25 27637 84% 71% 70% 70% 27718 13 0.29% 27635 211 28184 1.98%
X-n106-k14 26376 85% 89% 60% 75% 26436 25 0.23% 26376 962 26897 1.98%
X-n110-k13 14987 93% 100% 66% 83% 14987 8 0.00% 14987 265 15159 1.15%
Small X-n125-k30 55613 63% 76% 73% 75% 55683 235 0.13% s - 58581 5.34%
X-n129-k18 28765 62% 78% 72% 75% 28982 78 0.75% 28765 3479 29697 3.24%
X-n134-k13 10888 80% 89% 54% 72% 10917 77  0.27% - - 11284 3.64%
X-n139-k10 13590 85% 92% 81% 86% 13599 26 0.06% . - 13846 1.88%
X-n143-k07 15722 81% 87% 88% 88% 15726 54  0.02% - - 16245 3.32%
Average 23886 79% 85% 71% 78% 24256 65 0.22% - - 24987 2.82%
X-n101-k25 27606 83% 77% 63% 70% 27736 18 0.47% 27606 324 28298 2.51%
X-n106-k14 26358 66% 95% 73% 84% 26380 14 0.08% 26358 355 26871 1.95%
X-n110-k13 14971 87% 98% 67% 82% 14993 12 0.15% 14969 283 15137 1.11%
Medium X-n125-k30 55713 60% 74% 73% 74% 55758 198 0.08% 55655 5156 58735 5.42%
X-n129-k18 28862 60% 74% T75% 75% 29124 105 0.91% - - 20801 3.26%
X-n134-k13 10888 63% 74% 73% 74% 11024 320 1.25% . - 11304 3.82%
X-n139-k10 13601 90% 85% 76% 81% 13608 27  0.05% . - 13863 1.92%
X-n143-k07 15707 85% 97% 79% 88% 15710 63 0.02% - - 16200 3.14%
Average 24213 4% 84% 72% 78% 24292 95 0.38% s - 25026 2.89%
X-n101-k25 27651 70% 63% 77% 70% 28125 122 1.71% 27648 399 28142 1.98%
X-n106-k14 26412 65% 84% 74% 79% 26557 250 0.54% - - 26846 1.64%
X-n110-k13 15030 5% 86% 73% 80% 15107 35 0.51% 15030 2283 15187 1.04%
Large X-n125-k30 55733 55% 81% 75% 78% 55825 422  0.16% - - 58500 4.97%
X-n129-k18 28755 62% 78% 73% 75% 28972 171  0.76% 28748 2457 29546 2.75%
X-n134-k13 10908 69% 72% 68% 70% 10908 164 0.66% . - 11267 3.29%
X-n139-k10 13600 83% 8% 75% 80% 13635 47 0.26% . - 13850 1.84%
X-n143-k07 15716 88% 97% 73% 85% 15717 62 0.00% - - 16265 3.49%
Average 24226 1% 81% 73% 77% 24365 159 0.58% - - 24950 2.62%




Computational results - N, = 20%
C — 0

Interval
Po S
m C 1
ost sim(So,Sm) ML model metrics Edwe.f
T ge-fixin
X-n101-k25 27486 NR TPR Accuracy Cost Ti 5 Exact B&P
X-n106-k14 263 83% 73% 75% Time (s)  Gap C DACT
X-n11 38 72% 0 ° 74% 27628 ost Time(s) C
XALIOKLS 14980 2% 90% 1% G126 20 051% 27486 ost  Gap
Small x_:égﬁg 55493 63% ggof 144 80% 1502:1; 30 0.24% 26336 1231 28220 2.67%
) - 20020 o 68% 779 0 0.29% 147 26845 0
X-n134-k13 56%  71% 7% 55509 29% 14980 1.93%
10909 o 78% 240 233 0.03% 429 15152 :
X-n139-k10 73%  85% 4% 29408 U370 i, 1.15%
13 b 69° 143 :
X-n143-k07 oL 87%  91% 8o/° 77% 10943 1 1.33% 29009 5791 Ll
Average 15715 86% 900 1% 86% 13616 50 0.32% ] 29703  2.35%
24194 75% Bfty/o 867% 88% 15748 103 0.02% ] - 11323 3.80%
X-n101-k25 27512 6 75%  80% 24284 0 021% - - 13870 1.89%
X-n106-k14 26306 28:’,/" 4%  72% 73% 1 0IT% ] " Jtoes 2819
| ;z-niIO-kB 14983 735) 87% 1% 70% 3;6194 32 0.66% 27512 | 24908 281%
Medium x-:égﬁg 55503 529, ggé’ 7% 82% 15033 20 0.36% 26306 5218 28076  2.05%
X-n134-k13 57%  73% 8% 55579 64% 14983 1.72%
10877 o 76% 749 233  0.14% 548 15217 0
X-n139-k10 55%  82% 4% 29655 1470 - 1.56%
136 o 80% 315 -5
X-n143-k07 X 05 72%  87% 800/0 81% 10956 12 1.66% _ ] 8528 5.45%
Average 5708 819%  80° 0 84% 13631 7 0.73% _ 30001 2.85%
24208 655 81 ¢y/° 83% 800, 15745 205  0.20% ] - 11258 3.50%
X-n101-k25 27645 o o T1% 79% 24342 49  0.24% ) - 13855  1.84%
X-n106-k14 26413 b0%  T0% 735k — ki - - 16233 3.35%
X-n110-k13 15034 61%  79%  74% % 21871 56  0.819 - 24991 2.719%
L X-n125 68% 0 77% 26555 81% 27645
T Xen12 -k30 55958 58‘; 8lo/° 184 80% 1516 100 0.54% 166 28244 2.17%
n 0-k18 29123 559, 9% 70% 74% : 23 0.84% 15034 - 26834 1.59%
o 134-k13 10909 525) 7% 74% 75% 26168 433 0.37% 3 487 15216 121%
- 0 * - .
x-:}z§-k1° 13585 73% 82%  80% 81% 1%2? 386 1.16% 29092 s 4T7%
Average -k07 15743 819 57380/0 7% 83% 13619 254  1.31% ] 3106 29848  2.49%
24301 7 9%  79% o 139 0.259 - 11317 0
6 76% 78% 24458 41 0.20% ] - 13788 1.50%
179 0.69% ] - 16332 3.74%
- 25026 2.65%




Computational results - N. = 30%
C — 0)

Interval
Po Sm cost sim(S ML
OaSm) model metrics Ed
e—f. -
X-n106-k14 26383 75%  80% 70% ost Time(s) Gap C DACT
X-n110-k13 65% 89%  69° 75% 27669 ost Time(s) C
gy XN125-k30 55776 2% 92% 77% % 26438 s o b 27562 — P
X-n129-k18 53% 77% 73° 84% 15083 0.21% 26378 28219  2.38%
29414 b 73% 0 32 o 1577 2 ,
X-n134-k13 58% 80%  74° 75% 55834 0.52% 15005 6833  1.70%
10925 o 74% 0 259 0 555 1 °
X-n139-k10 13 77% 90%  62° 7% 29778 0.10% ] 5157 1.01%
X-nl 622 830 270 76% 237 1.24% - 58601
Ave n143-k07 15754 % 91%  73% o 10952 140 0.25% 20405 3742 5.06%
rage 2 83% 79%  87% 82% 13602 0.25% - 30086  2.28%
4305 0 o 87% 830 154 0.51¢ - 113 0
X 1% 85% 739 3% 15822 51% i 61 4.00%
oLkes o7 6 73% 200 56 0.43° . 1382 X
x-nmﬁ"‘14 26437 3% 68%  73% 719 133 0.46% o3 300k
-n110-k13 150 590%  75% 709 1% 27804 - . 25052 2. °
Medium <12 °9 77% / 73% 51 0.54% 2.70%
X-n1 221 540 8% 80% 14 0.24% - 26780
n134-k13 10926 %  79%  75% /o 56009 =1 0 o 15058 269 1.30%
X-n139-k10 13 56% 83%  80° 77% 29698 0.15% ] 15202 1.55%
X-n1 640 759 0% 81% 137 1.63% - 58859
Ave n143-k07 15782 % 89% T78% o 11048 10 1 o 29215 3574 5.25%
4330 ; o 85% 2t 256 0.49° - 113 ,
X 64% 80% 769 % 15870 A9% i 01 3.43%
n101-k25 276 o 76% 789 49 0.559 - 1392 ,
% 17 p % 24481 55% i 6 2.09%
-n106-k14 2644 % 76%  72% 167 0.67% - 16423 ;
X-n11 0 54% ; 74% 2 0 i 4.06%
0-k13 150 o T79% 68° 0 7929 - 25088
L X-n12 20 66% / 74% 185 1.12% 2 2.76%
i . 70
arge 1120430 56228 % 8%  72% e et s 0Tk 339 282
n120.k18 29674 5%  84%  71% 7% 15211 i~ 75% _ _ 07 2.13%
X-n134-k13 10950 58%  75%  73% 78% 56221 475 0.80% 15090 119 26913 1.79%
Xenl 94 73% & 82% 75 1.69% - 58725
Ave n143-k07 15884 o 91% T76% o 11029 145 0 o 29670 4914 4.44%
rage o4 70% 8% /0 84% 13635 0.72% ] 30554 2.97%
437 o 0 83A) 8 0 128 0.1 0 - 114 0
63% 82% 75% 3% 15941 14% i 23 4.31%
A 295 24808 313 0.36% - 13868 1.85%
211 0.70° ] - 16 oo,
10% _ 326 2.79%
25167 2.72%




Summary

e Discrete Optimization is one of the tools of choice for a variety of
applications, including those of interest for this workshop.

e The needs for making combinatorial optimization competitive Iin
many applied contexts include:

e dealing with big (and uncertain) data

e “learn” to repeatedly solve the “same instance”

e QOverall we start to have (solid) evidence that ML / CO integration
approaches could be effective to deal with those needs and
challenges.



SCIP

Solving Constraint Integer Programs

https://www.scipopt.orqg/

e (One of the fastest non-commercial solvers for MIP

 ~800k lines of code; many advanced features and extensions

Ecole: A Gym-like Library for Machine Learning in
Combinatorial Optimization Solvers

://www.ecole.ai/

Antoine Prouvost Justin Dumouchelle Lara Scavuzzo
Mila, Polytechnique Montréal Polytechnique Montréal Technische Universiteit Delft

Maxime Gasse Didier Chételat Andrea Lodi
Mila, Polytechnique Montréal Polytechnique Montréal Mila, Polytechnique Montréal
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https://www.scipopt.org/
https://www.ecole.ai/

NeurlPS 2021 competition: ML4CO

Machine Learning for
Combinatorial Optimization

——COMPETITION 2021——

Mixed Integer Linear Programming (MILP)

g"g\ argmin ¢ ' X
o({efe)s ,
A subject to A 'x < b,

s S = e o |

Machine Learning for Combinatorial Optimization (ML4CO)
NeurlPS 2021 competition (Submission deadline: Oct 31 2021)
https://www.ecole.ai/2021/ml4co-competition/
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Three Tasks

p

X1,X2,X4
fractional
a 2 - X1 =1 \ Xy = 2
Finding feasible
solutions of MILP X2, X4 X,
fra‘ctionall fractional\
x4£2/ \?23 xgﬂﬂ/ \xzzl
Primal Task Dual Task Configuration Task

frnranhnanls Artificial Intallimanca
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