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Preamble and Disclaimer
The use of Machine Learning (ML) for Combinatorial Optimization (CO) 
problems has been ubiquitous in the last 5 years at the very least.


This is due to the incredible success of ML, especially deep learning, in 
beating human capabilities in image recognition, language processing and 
sequential games.


Those successes led to ask natural questions about using modern statistical 
learning in other disciplines, Combinatorial Optimization being one of them.


The new, very recent frontier of Generative Artificial Intelligence is yet another 
story and is not covered by this talk.




Discrete Optimization: where?






Discrete Optimization: how?
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Outline
The talk is divided in two parts:


• Part 1 sets the ground of what using ML for Combinatorial Optimization 
means and discusses some of fast-growing literature in a methodological 
fashion.


• Part 2 introduces a business perspective on how ML could successfully 
help Combinatorial Optimization on applications by using an example in 
logistics.  




Part 1: ML for Combinatorial Optimization




Schematic Overview  
Slide courtesy of N. Yorke-Smith

Y. Bengio, A. Lodi, A. Prouvost: Machine Learning for Combinatorial 
Optimization: a Methodological Tour d’Horizon, EJOR 2021, 405-421

J. Kotary, F. Fioretto, P. Van Hentenryck, B. Wilder: End-to-End 
Constrained Optimization Learning: A Survey. IJCAI 2021: 4475-4482
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Too long


• Expert knowledge of how to make decisions


• Too expensive to compute


• Need for fast approximation



Too heuristic


• No idea which strategy will perform better


• Need a well performing policy


• Need to discover policies



Question

• Can Machine Learning methods as Imitation Learning, 
Reinforcement Learning and all the recent powerful 
techniques (e.g., Deep Learning) and architectures (e.g., 
Graph Neural Networks) help Combinatorial Optimization 
algorithms by dealing with the issues above (“too slow” 
and / or “too heuristic”)?



Requirement

• We want to keep the guarantees provided by exact CO 
algorithms (feasibility, sometimes optimality).



Random Images

Random iid pixels Random face (GAN) 
thispersondoesnotexist.com



Random Instances

Random iid coefficients a1c1s1 from MipLib 2017 



Imitation Learning in a nutshell

• Generally speaking, Machine Learning is a collection of techniques for


• learning patterns in or 

• understanding the structure of data, 


• often with the aim of performing data mining, i.e., recovering 
previously unknown, actionable information from the learnt data.


• Typically, in ML (IL in particular) one has to “learn” from data (points in 
the so-called training set) a (nonlinear) function that predicts a certain 
score for new data points that are not in the training set.


• Each data point is represented by a set of features, which define its 
characteristics, and whose patterns should be learnt.


• The techniques used in ML are diverse, most recently artificial (deep) 
neural networks algorithmically boosted by first order optimization 
methods like gradient descent, etc.



Deep Learning in a nutshell
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Reinforcement Learning in a nutshell
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Learning Methods
Demonstration


• An expert/algorithm provides a 
policy


• Assumes theoretical / empirical 
knowledge about the decisions


• Decisions are too long to compute


• Supervised (imitation) learning

Experience


• Learn and discover new policies 
(hopefully better)


• Unsatisfactory knowledge (not 
mathematically well defined)


• Decisions are too heuristic


• Reinforcement learning



Demonstration

• Approximating strong branching 
[Marcos Alvarez et al. 2014, 2016, 2017][Khalil et al. 2016]


• Approximating lower bound improvement for cut selection 
[Baltean-Lugojan et al. 2018]


• Approximating optimal node selection 
[He et al. 2014]

Decision?

πexpert

π̂ml ^action

action

min distance



Experience

• Learning greedy node selection (e.g., for TSP) 
[Khalil et al 2017a]


• Learning TSP solutions 
[Bello et al. 2017][Kool and Welling 2018][Emami and Ranka 2018]

Decision?
π̂ml

^action reward
score

max return



Demonstration vs Experience

Supervised 

• Cannot beat the expert (an 
algorithm) 
→ only interesting if the 
approximation is faster


• Can be unstable


• Cannot cope with equally good 
actions

Not mutually exclusive

Better combined!

Reinforcement 

• Reinforcement can potentially 
discover better policies


• Harder, with local maxima 
(exploration difficult)


• Need to define a reward



Algorithmic Structure

• How do we build such algorithms? How do we mix CO with ML? 

• How do we keep guarantees provided by CO algorithms 
(feasibility, optimality)?



End to End Learning

• Learning TSP solutions 
[Bello et al. 2017][Kool and Welling 2018][Emami and Ranka 2018] 
[Vinyals et al. 2015][Nowak et al. 2017]


• Predict aggregated solutions to MILP under partial 
information 
[Larsen et al. 2018]


• Approximate obj value to SDP (for cut selection) 
[Baltean-Lugojan et al. 2018]

SolutionML
Problem

definition



Learning Properties

• Use a decomposition method 
[Kruber et al. 2017]


• Linearize an MIQP 
[Bonami et al. 2018]


• Provide initial cancer treatment plans to inverse 
optimization 
[Mahmood et al. 2018]

SolutionML
Problem

definition
ORDecision



Learning Repeated Decisions 
• Learning where to run heuristics in 

B&B 
[Khalil et al. 2017b]


• Learning to branch 
[Lodi and Zarpellon 2017] (survey)


• Learning gradient descent 
e.g. [Andrychowicz et al. 2016]


• Predicting booking decisions under 
imperfect information 
[Larsen et al. 2018]


• Learning cutting plane selection 
[Baltean-Lugojan et al. 2018]

SolutionOR
Problem

definition

ML

State Decision

} just a matter 
of viewpoint



Decision-aware learning

• Quadratic Programming 
[Amos and Kolter 2017]

• Novel loss functions development  
[Elmachtoub and Grigas 2022] [Mandi et al. 2022]

• Perturbation or penalization methods  
[Mandi and Guns 2020] [Blondel et al. 2020] [Wilder et al. 2019]



Part 2: a logistics-flavored business perspective 




Business Applications
• Many businesses care about 

solving similar problems 
repeatedly


• Solvers do not make any use of 
this aspect


• Power systems and market 
[Xavier et al. 2019]


• Schedule 3.8 kWh ($400 billion) 
market annually in the US


• Solved multiple times a day


• 12x speed up combining ML 
and MILP



M. Morabit, G. Desaulniers, A. Lodi, Learning to repeatedly solve routing problems, arXiv:2212.08101, 2022.


Slides based on the PhD defense of M. Morabit





































Summary
• Discrete Optimization is one of the tools of choice for a variety of 

applications, including those of interest for this workshop. 


• The needs for making combinatorial optimization competitive in 
many applied contexts include:


• dealing with big (and uncertain) data


• “learn” to repeatedly solve the “same instance”


• Overall we start to have (solid) evidence that ML / CO integration 
approaches could be effective to deal with those needs and 
challenges.



• One of the fastest non-commercial solvers for MIP


• ~800k lines of code; many advanced features and extensions


•

50

https://www.scipopt.org/ 

https://www.ecole.ai/ 

https://www.scipopt.org/
https://www.ecole.ai/
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