
Alternative approaches to cancer treatment:

towards stochastic tumour control

Alessandro Borri1, Elena Mitkova Nikolova2, 

Pasquale Palumbo3, Federico Papa4

1 Institute for Systems Analysis and Computer Science "A. Ruberti" (IASI), CNR, L'Aquila, Italy
2 DISIM Department, University of L’Aquila, L’Aquila, Italy

3 Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
4 Institute for Systems Analysis and Computer Science "A. Ruberti" (IASI), CNR, Rome, Italy

BUILding a DIgital Twin: requirements, methods, and applications



D3-4-Health – Spoke 3
D3-4-Health

“Digital Driven Diagnostics, prognostics and therapeutics for sustainable Health care”
Funded by the Italian National Recovery and Resilience Plan (NRRP) complementary fund

Goal: Delivery of accessible and affordable diagnostic, monitoring and therapeutic pathways 
for 5 reference diseases

BUILD-IT 2023 Workshop - Rome, October 19th, 2023 



Metastatic 
colon cancer 

P1

CLINICAL USE CASES AND NEW MODELS OF CARE SUPPORTED BY 

AI/E-HEALTH BASED SOLUTIONS  (Uni Milano)

WEARABLE TECHNOLOGIES, SENSORS AND BIOMARKERS FOR CARE THROUGH 

DIGITAL TWIN APPROACHES (Sapienza)

BIOLOGICAL AND BIOENGINEERED IN VITRO MODELS FOR CARE THROUGH 

DIGITAL TWIN APPROACHES (Politecnico di Torino)

MULTILAYER PLATFORM FOR GENERATION OF 

PATIENTS’ DIGITAL TWIN (Uni Salerno)

1

2

3

4

S
P

O
K

E
S

REFERENCE DISEASE

Liver and 
bile duct 

cancer

Central 
Nervous 

System 
cancer

Diabetes 
type I

Multiple 
sclerosis

P2 P3 P4 P5

BUILD-IT 2023 Workshop - Rome, October 19th, 2023 



Outline of this talk

• The challenge of tumour growth control is here addressed exploiting a minimally

parametrized and low-dimensional model that takes proliferating and necrotic tumour cells

dynamics into account, as well as the level of an anti-tumour drug.

• Based on a Chemical Reaction Network (CRN) modelling approach, a double

stochastic/deterministic description of the system is given. The deterministic ODE model can

be exploited for control purposes particularly when the number of tumour cells is high.

• Two alternative control approaches are investigated in the deterministic context: (i) a constant

drug infusion, (ii) a state-feedback control scheme, with partial or complete knowledge of the

state. Asymptotical guarantees of tumour eradication are given.

• When the number of tumour cells becomes relatively low, the stochastic formulation

provides a more accurate description of the dynamic behaviour of the system and allows to

compute a statistics of the eradication time.
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D3-4-Health – Spoke 3
Multi-scale modeling
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• We describe by means of the following CRN some physiological aspects of the tumour growth, as

well as the growth inhibition due to tumour-drug interaction.

Deterministic Vs Stochastic Modelling 

of Tumour Growth and Treatment

Tumour mass

proliferating cells

necrotic cell core

treatment

CRN 

X1 – proliferating tumour cells

X2 – dead tumour cells

X3 – drug molecules

Processes

Species

• The proposed deterministic-stochastic modelling framework generalizes the deterministic CRN-

based approach introduced by Drexler et al. (2019).
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Deterministic formulation

• The deterministic formulation of the model is obtained by means of two steps:

1) following the usual mechanism-based description of a CRN (based on flux balances), we

first derive a basic model representation in terms of chemical species concentrations

CRN Basic deterministic representation 

ni: number of cells/molecules of the species Xi

(ni=V[Xi], i=1,2,3,V: volume of the reaction system)

 = V k4, r = V k6, Mj = V Kj, j = 4, 5 

2) we express the obtained ODE model in terms of countable variables, i.e., cells and drug

molecules copy numbers

• The countable deterministic model shows a little abuse of notation, since it provides a continuous

description (in terms of ODEs) of cell/molecule copy numbers, which are intrinsically discrete state

variables. However, such a formulation allows a direct comparison with the stochastic formulation.
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• n(t) = (n1(t),n2(t),n3(t)) is a Continuous Time Markov Chain defined by the reaction parameters ci (ci

dt: probability that a particular combination of Ri-reactants reacts in (t,t+dt) in the volume V).

• Given the propensities ai the probability that a generic step Ri reacts in (t,t+dt) is ai dt = hi(n(t)) ci dt.

Stochastic formulation

CRN Stochastic representation 

The propensities ai have the same

expression of the fluxes i.
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• First-order moment equations are obtained by applying the van Kampen approximation (2007) for

the nonlinear propensities a4, a5.

1-st moment system 
The 1-st order moment system has the same

structure of the deterministic model.

The deterministic model approximates the 1-st order

moment provided that the following parameter

parameter equivalence holds:
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Numerical simulations

• Random paths (blue dots) obtained by means of the -leap simulation algorithm (Gillespie, 2001).

• The deterministic evolution (red line) reproduces the 1st-order moment dynamics.

r =1.53*109 molec. per day

Model parameters set according to Drexler et al. (2019) 

(breast cancer of mouse; treatment: Pegylated 

Liposomal Doxorubicin drug)

(n1(0), n2(0), n3(0)) = (3.95*106, 100, 0) 

• The high number of proliferating tumour cells makes the stochastic fluctuations negligible.

• The mean trend is still well captured by the ODEs, but fluctuations are now highly detectable.

• Fluctuations let the system reach the absorbing state n1=0 in a finite time, making the stochastic

formulation particularly interesting when dealing with strategies for complete tumour eradication.

• At the beginning of the therapy, it is reasonable to assume a high number of tumour cells: the

ODE is preferable to lighten the computational burden.

• Dealing with successful therapies, tumour cells reduce to a very low level: the CME is then a

preferable representation.

Reduced copy number of proliferating cells

r =1.53*109 molec. per day

Model parameters set according to Drexler et al. (2019) 

(breast cancer of mouse; treatment: Pegylated 

Liposomal Doxorubicin drug)

(n1(0), n2(0), n3(0)) = (300, 100, 0) 
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Model dynamics under a constant infusion

• A qualitative analysis is performed with reference to the deterministic model under time-invariant

infusion 𝑟(𝑡) = ҧ𝑟, obtaining the following brief summary for the existence and the (local) stability

properties of the model equilibria.

➢ is the extinction equilibrium;

➢ , with

is the persistence equilibrium;

• Only E1 is of interest for medical applications.

• Looking for an effective anticancer treatment is reasonable only in the parameter subspace

with a constant infusion rate rate ҧ𝑟 in the admissibility range

ҧ𝑟 ∈ 𝛽𝜌, 𝜌 .

*

*
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Model dynamics under a constant infusion

• A global analysis has been performed for 𝑘5 > 𝑘1 − 𝑘2 > 0 and for the administration rate ҧ𝑟 ∈
𝛽𝜌, 𝜌 .

• Two regions with clear dynamical behaviour are found in the positive orthant of the plane (n3,n1):

• Every real scenario starts from the point (n3(0),n1(0))=(0,n10), with n10>0: the dynamical

behaviour of the state variables strongly depends on their initial values, and in particular on the

tumour size n10 when the therapy starts.
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Model dynamics under a constant infusion

• If the constant administration rate ҧ𝑟 ∈ 𝛽𝜌, 𝜌 is chosen without a proper evaluation of the initial

tumour size the therapy can fail.

• If 𝑛10 < ത𝑛1, the evolution depends on which region (red-vs-green) is reached before the other one.

• Such a tuning of the constant therapy can be accomplished until 𝑛10 < 𝑛10
𝑚𝑎𝑥 with .

• If 𝑛10 ≥ 𝑛10
𝑚𝑎𝑥 there is no admissible constant therapy (i.e., ҧ𝑟 ∈ 𝛽𝜌, 𝜌 ) such that the condition

𝑛10 < ത𝑛1 holds.

• Conversely, if 𝑛10 ≥ ത𝑛1 the tumour will

indefinitely grow.

• As ത𝑛1 depends on ҧ𝑟, it is possible to increase

ത𝑛1 by increasing ҧ𝑟 (keeping 𝑛10 far from the

critical region of unlimited growth), until the

condition ҧ𝑟 < 𝜌 holds.
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Model dynamics under a constant infusion

• The figure shows an example of the state trajectories obtained for a constant therapy (with ҧ𝑟 ∈

𝛽𝜌, 𝜌 , 𝑘5 > 𝑘1 − 𝑘2 > 0) changing the initial tumour size 𝑛10 ∈ 0, 2 ത𝑛1 .

ത𝑛1

ത𝑛3 ത𝑛3

ത𝑛1

• The transition from stability to instability is obtained when 𝑛10 is very close to the threshold ത𝑛1:

instability starts from about the 98% of ത𝑛1.

• Although ҧ𝑟 ≪ 𝜌, the initial condition 𝑛10 < ത𝑛1 produces “nearly always” a stable trajectory.
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Model dynamics under feedback control laws

• A constant therapy administration has the advantage that it is only dependent on the system

parameters, without requiring any real-time information about the system dynamics.

• However, such a therapy has important limitations:

o big tumours with initial size larger than (or equal to) 𝑛10
𝑚𝑎𝑥 cannot be eradicated by an

admissible administration ( ҧ𝑟 < 𝜌);

o there is actually no guarantee that tumours with 𝑛10 < 𝑛10
𝑚𝑎𝑥 can be eradicated.

• These limitations come from the necessity of making a permanent choice at the beginning of the

therapy, exploiting at most an evaluation of the initial tumour size.

• A feedback control is always able to overcome such limitations, allowing to eradicate the tumour

even when only partial information about the system dynamics are available.
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Model dynamics under feedback control laws

• Conversely, when the administration rate is changed over time based on the state estimation, we

can always guarantee an increase of the drug level, independently of the tumour size.

• Based on the conservative estimations ො𝑛1(𝑡) ≥ 𝑛1(𝑡), ො𝑛3(𝑡) ≥ 𝑛3(𝑡), we can build conservative

lower bounds for the formulation of a time-varying administration rate r(t) guaranteeing drug

accumulation.

• For instance, if a complete estimate (tumour and drug level) is available, we define the lower

bound as

• Otherwise, if no information on the drug accumulation is available, we can define a higher lower

bound for r(t) as

• In both cases, it is 𝑟(𝑡) > 𝑟𝐿𝐵(𝑡)  ⟹  ሶ𝑛3(𝑡) > 0, so ensuring drug accumulation for any tumour size:

sooner or later the condition 𝑛3 > ത𝑛3, and then ሶ𝑛1 < 0 (tumour shrinking), will be reached.

• The main problem of the trajectories related to the constant

therapy starting from or entering the red region is that the

condition 𝑛3 > ത𝑛3 (characterized by ሶ𝑛1 < 0) cannot be reached

as the increasing tumour mass sooner or later will change the

sign of ሶ𝑛3 (before reaching the condition 𝑛3 > ത𝑛3).
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Model dynamics under feedback control laws

• In particular, the condition 𝑛3 > ത𝑛3 ( ሶ𝑛1 < 0) can be reached in a finite time assuming the law

that allows the desired condition for any chosen time ҧ𝑡1.

• Note that the value of 𝜌 is no more a limitation for the size of the time-varying administration rate.

In fact, since the feedback control can be applied for finite time intervals, 𝑟(𝑡) can temporarily

exceed the value of 𝜌 without risking an unlimited accumulation of drug.

• As it is not recommended a consistent drug accumulation over the threshold ത𝑛3, after the time
ҧ𝑡1 the control action should switch to a lower (possibly constant) administration rate as soon as

favourable conditions regarding tumour eradication are reached.

• For instance, we can choose a tolerable constant administration rate ҧ𝑟 (i.e., a specific value in the

admissibility range 𝛽𝜌, 𝜌 ), compute the related threshold on the tumour size ത𝑛1 =
ҧ𝑟−𝛽𝜌

𝑘1−𝑘2
, and

then switch to the constant administration rate 𝑟 𝑡 = ҧ𝑟 for 𝑡 ≥ ҧ𝑡2, where ҧ𝑡2 is the time at which the

tumour shrinking has reached the condition 𝑛1 ҧ𝑡2 = ത𝑛1.

• The conditions 𝑛1(𝑡) ≤ ത𝑛1 and 𝑛3(𝑡) > ത𝑛3, obtained for 𝑡 ≥ ҧ𝑡2, ensure that the trajectory has

reached the green zone and then it is approaching E1.
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Numerical simulations

Constant vs. feedback therapy with full information

• 𝑛1(0)=1.05*ത𝑛1: the constant therapy is not able to stop tumour growth while state feedback slowly reduces the

tumour growth, after a time interval of ҧ𝑡1 = 7 days.

• Due to the tumour size

overestimation and the more

conservative lower bound, the

partial information feedback

produces a higher accumulation of

drug in the transient than the full

state feedback and forces a faster

tumour decrease.

• The partial/imperfect information

feedback switches to constant

therapy before the full/perfect state

case ( ҧ𝑡2 = 326 Vs ҧ𝑡2 = 380 days)
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Numerical simulations

Switch to the stochastic formulation

• The time evolution of the ODE system can reach E1 waiting an infinite time interval.

• To evaluate finite (mean) eradication times (for the given parameter setting, i.e., a specific tumour

and a particular drug, with a given administration rate) it is necessary to switch to the stochastic

formulation.

• The reported histogram depicts the eradication time statistics for breast cancer in mice treated by

Pegylated Liposomal Doxorubicin drug obtained over 1000 random paths.
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• We address the problem of tumour growth control exploiting a minimally parameterized and low-

dimensional model of tumour growth under treatment.

• The system has been described by means of the CRN formalism, providing a double

mathematical description, deterministic-vs-stochastic, of the system.

• The deterministic model is a valid tool to describe the system when the number of tumour cell is

high, and it allows to plan deterministic control laws to stop tumour growth and to reduce the

mass size.

• Two alternative deterministic control approaches are investigated, a constant infusion and a

feedback control scheme, exploiting both partial and complete knowledge of the state.

• The constant therapy has several limitations, as the treatment failure caused by too large

tumours, while the proposed feedback control is very promising since it allows to eradicate

arbitrarily large tumours.

• The deterministic modelling framework suffers from an intrinsic limitation since tumours can be

eradicated only asymptotically (i.e., over an infinite time horizon); the stochastic formulation

provides a more accurate description of the system dynamics, allowing a statistical evaluation of

the eradication time.

• Modelling further physiological mechanisms of the tumour growth and treatment, as well as the

planning of a stochastic control law, are future developments of the study.

Conclusions
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