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Thiswork proposesapredictivedigital twin approach to thehealth monitoring and management planning of civil

structures. Theasset-twin dynamical system and its evolution over timeareencoded by means of aprobabilistic

graphical model, adopted to rule the observations-to-decisions flow and quantify the related uncertainty. Deep

learning models are adopted to assimilate observational data, and provide structural health diagnostics in real-

time. The digital state is updated in a sequential Bayesian inference fashion, to inform an optimal planning of

maintenance and management actions. A preliminary offline phase involves the population of training datasets

through a reduced-order numerical model, and the computation of ahealth-dependent control policy.
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1. Introduction

Thedigital twin (DT) concept represents themost exciting opportunity to moveforward predictivemaintenance

practices, and thus increase the safety and availability of civil structures. This isnowadays possible as the installa-

tion of data collecting systems has become affordable, and thanks to the advances in learning methodologies.

Thiswork proposesaDT framework for civil structures. Theasset-twin dynamical system isencoded by means

of adynamic Bayesian network (DBN) inspired by [1]. The observations-to-decisions flow is encoded as:

• From physical to digital. Observational data, or measurements, are gathered from the physical system and

assimilated with deep learning (DL) models, seee.g. [2], to estimate thestructural health parametersunderly-

ing the digital state and describing the variability of the physical asset. This first estimate of the digital state

is then exploited to estimate an updated digital state, according to control-dependent transition dynamics

models describing how thestructural health is expected to evolve.

• Fromdigital to physical. Theupdated digital state isemployed to predict the futureevolution of thephysical

system, thereby enabling predictivedecision making about maintenance and management actions.

The DT framework is made computationally efficient through a preliminary offlinephase that involves: (i) the

population of training datasets through areduced-order numerical model, seee.g. [3], exploiting thephysics-based

knowledge about the system response. This is useful to overcome the lack of experimental data typical of civil

engineering applications. (ii) training theDL modelsunderlying thestructural health identification. Thisallowsfor

automating the selection and extraction of optimized damage-sensitive features, to ultimately relate them with the

corresponding structural states in real-time. (iii) learning the health-dependent control policy to be applied at each

timestep of theonline phase, to map thebelief over thedigital stateonto actions feeding back to thephysical asset.

The strategy is assessed on the simulated monitoring of a railway bridge, demonstrating the capabilities of

health-aware DTs of accurately tracking the evolution of structural health parameters under varying operational

conditions, and promptly suggesting the most appropriate control input with relatively low uncertainty.
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Why SHM? 
Optimal management: to reduce 

lifecycle costs and to increase the 

system safety and availability.

What is SHM? 
The implementation of a 

damage detection strategy for 

deteriorating structures.
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Aloha Airlines 1988, separation of 

the fuselage upper lobe – 1 fatality

Genoa 2018, partial collapse of the 

Morandi Bridge – 43 fatalities

The need of Structural Health Monitoring (SHM)



Underlying
cause

Sensor observations

SHM
Vibration-based

(multivariate time series, 

e.g. accelerations meas.)

State-of-the-art: workflow and hierarchical structure of SHM

2

State-of-art: workflow & SHM hierarchical structure

Rytter. Vibration Based Inspection of Civil Engineering Structures. Ph. D. dissertation. Aalborg University, Denmark, 1993. 

Farrar, Worden. Structural Health Monitoring: A Machine Learning Perspective; John Wiley & Sons, 2013. 
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Underlying
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Vibration-based

(multivariate time series, 
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State-of-art: workflow & SHM hierarchical structure

Which data? → Physics-based models (localization, quantification)



SHM for optimal management of deteriorating structures
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SHM for optimal management of deteriorating structures

Goal: create a digital twin that adapts to the evolving structural

health providing real-time health diagnostics that enable dynamic

decision making about management and maintenance actions.
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today
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Governing equation of motion Linearized kinematics

Physics-based model describing the dynamic

response of a structure to the applied loadings

Linear-elastic material

Finite element space discretization

Physics-based models to simulate the effect of damage
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Parameter vector    : damage, loadings, environment, …

5

Given initial conditions, boundary conditions, and system parameters

compute solution trajectories, to be compared with sensor recordings

Governing equation of motion Linearized kinematics

Physics-based model describing the dynamic

response of a structure to the applied loadings

Linear-elastic material

Finite element space discretization

Physics-based models to simulate the effect of damage
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The need of reduced-order modeling (ROM)

• The offline generation of synthetic training datasets, sufficiently representative of potential damage 

and operational conditions, may become prohibitive.

• We employ the reduced basis method for parametrized systems (not a restrictive choice).



The need for reduced-order modeling
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The need of reduced-order modeling (ROM)

FOM

Low-dimensional subspace

(POD/SVD or greedy)

best rank N approximation

(Petrov)-Galerkin projection

ROM

• The offline generation of synthetic training datasets, sufficiently representative of potential damage 

and operational conditions, may become prohibitive.

• We employ the reduced basis method for parametrized systems (not a restrictive choice).

Low-dimensional dynamical system

(low-cost physics-based model)
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Loss function prototype

Data-driven approach to inverse problems – neural network case
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The case of SHM:

❖ parameters    : define an expressive representation of the structural health  

❖ measurements: experimental (sensors) vs simulated (reduced-order model) 

❖ forward operator     : real vs simulated structural response

• stiffness reduction

• loose knot bolts

• crack pattern

• delamination size

Data-driven approach to inverse problems – neural network case
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Loss function prototype

Forward operator (parameters      measurements)

Inverse problem (measurements      sought parameters)

Neural network approximation to  

presence, location, 

severity of damage



Simulation-based SHM: the problem is traced back to 

train machine learning models on simulated data.

Processed data: vibration recordings shaped as 

multivariate time series, mimicking a sensor network.

Damage: introduce damageable regions distributed 

over the structure and model the effect of damage.

the classificat ion task difficulty. All the computat ions have been run on a PC featuring an

Intel (R) Core™, i5 CPU @2.6 GHz and 8 GB RAM.

3.1. Case study 1 - Clamped Beam

The two-dimensional cant ilever beam depicted in Fig. 3 has been numerically modeled

by discret izing its geometry in 502 Constant St rain Triangle (CST) finite elements. The

discret izat ion results in 252 nodal points, thus leading to 504 and 252 dofs describing the

mechanical and thermal behavior, respect ively. Having considered a structural thickness of

0.1 m, the plane st resses formulat ion has been adopted. The beam has been assumed made

of ordinary st ructural steel, whose mechanical and thermal propert ies are: Young modulus

E15◦ C = 210 GPa; Poisson rat io ⌫ = 0.3; density ⇢= 7800 kg/ m
3
; thermal expansion

coefficient ↵L = 13 · 10− 6 ◦ C− 1; st i↵ness thermal coefficient ↵E = 2.4 · 10− 4 ◦ C− 1. The

lat ter one allows to relate the local material temperature to the material st i↵ening/ softening

E (T ) = E15◦ C · [1− ↵E (' − 15 ◦ C)],

within the temperature range (− 40, + 40) ◦ C; E15◦ C denotes the Young modulus value at

the construct ion reference temperature of 15 ◦ C. In Tab. 1 the first 5 analyt ical (calculated

according to the Euler-Bernoulli beam theory) and numerical frequencies of vibrat ion are

listed alongside with the corresponding periods of vibrat ion.

F igur e 3: clamped beam - FOM configurat ion and numerical FE discret izat ion.

Mode number Main direct ion f A n [Hz] f N um [Hz] Period [s]

1 t ransversal 20.95 21.71 0.0461

2 t ransversal 131.32 130.84 7.64 · 10− 3

3 longit udinal − 324.81 3.08 · 10− 3

4 t ransversal 367.73 344.60 2.90 · 10− 3

5 t ransversal 720.61 627.73 1.59 · 10− 3

Tab le 1: clamped beam - first 5 analyt ical ( f A n ) and numerical ( f N um ) vibrat ional frequencies and corre-

sponding periods of vibrat ion.

The beam has been excited by a uniformly dist ributed load q(t), act ing on the upper

edge with law q(t) = Q · sin(2⇡ ft), start ing from the rest state. The load amplitude Q

and frequency f are variable parameters, defining the parameters vector ⌘u = { Q, f} , that

have been modeled as two random variables described by two uniform pdfs UQ (5, 10) kPa

and Uf (15, 400) Hz. Moreover, the beam has been assumed subjected to the temperature

profiles depicted in Fig. 4. Temperature have been assumed constant over the two short
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F igur e 5: clamped beam - (a) subdomains {⌦1 ,⌦2 ,⌦3 } related to the considered damage condit ions

{ g1 , g2 , g3 } , respect ively; vibrat ional (b) and t emperat ure (c) sensors networks arrangement .

as delta with respect to the const ruct ion reference temperature of 15 ◦ C. The e↵ect of the

two thermal condit ions in terms of st ructural displacement is depicted in Fig. 7; not only

a material expansion e↵ect is clearly observable in Fig. 7a as consequence of the thermal

condit ion of Fig. 6a, but also, in presence of the temperature gradient across the thickness

of the thermal condit ion of Fig. 6b, a curvature e↵ect is generated, as shown in Fig. 7b.
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F igur e 6: clamped beam - thermal reference condit ions: from 15 ◦ C t o 30 ◦ C with uniform (a) parabolic

law across the thickness and with varying (b) parabolic law across the thickness.

Assuming input parameters { Q = 10 kPa, f = 15 Hz, g = 1} , consider now to apply
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Simulation-based damage detection/localization & quantification

9
Rosafalco, Torzoni, Manzoni, Mariani, Corigliano. Online structural health  monitoring by

model order reduction and deep learning algorithms, Computers & Structures, 255:106604, 2021.
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Simulation-based damage detection/localization and quantification

Damage quantification as a regression task:

Damage detection/localization as a classification task:

Evaluate forward models to generate training data and train inverse models (offline): 
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Simulation-based damage detection/localization & quantification

Rosafalco, Torzoni, Manzoni, Mariani, Corigliano. Online structural health  monitoring by

model order reduction and deep learning algorithms, Computers & Structures, 255:106604, 2021.

Simulation-based SHM: the problem is traced back to 

train machine learning models on simulated data.

Processed data: vibration recordings shaped as 

multivariate time series, mimicking a sensor network.

Damage: introduce damageable regions distributed 

over the structure and model the effect of damage.



Overview: end-to-end information flow

Main components:

❖Simulation-based damage identification

❖Structural health identification using neural networks

❖Probabilistic graphical model for predictive digital twins 10
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Key assumptions:

• Physical state only observable indirectly 

via the sensed structural response.

• Markovianity of physical and digital states.

Physical state: - variability of the asset 

Digital state: - capture the asset variability 

Observations: - from physical to digital flow

QoI: - estimated via model output

Control inputs: - from digital to physical flow

Reward: - asset-twin performance

Probabilistic graphical model encoding the asset-twin system

Torzoni, Tezzele, Mariani, Manzoni, Willcox. A digital twin framework for civil engineering structures, arXiv preprint, 2023.

Structural health

identification

Sensed structural

response

Planning of

optimal control

Probabilistic graphical model

Digital state inference and evolution prediction

Physical to digitalDigital to physical

Sensing

Digital state

evolution tracking
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Physical state: - variability of the asset 

Digital state: - capture the asset variability 

Observations: - from physical to digital flow

QoI: - estimated via model output

Control inputs: - from digital to physical flow

Reward: - asset-twin performance



Physical state:

Digital state:

Observations:

QoI:

Control inputs:

Reward:

Belief state factorization
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Planning of optimal control & extension to prediction

• Forecasting/maintenance planning 

from the updated digital state at the 

current time step (no data assimilation).

• Unroll the portion of the graph relative to 

digital state, control inputs, reward and 

quantities of interest.

13



Planning of optimal control & extension to prediction

Planning of

optimal control

Control policy maps the digital state belief onto actions 

Multi-objective planning reward function 

• Forecasting/maintenance planning 

from the updated digital state at the 

current time step (no data assimilation).

• Unroll the portion of the graph relative to 

digital state, control inputs, reward and 

quantities of interest.
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Undamaged case 

+ 6 damageable zones 

Stiffness reduction in the range 

(30%,80%), 6 intervals discretiz.

(37 possible structural states)

Data assimilation: Damage modeling:

Hörnefors railway bridge

Structural health

identification

Sensed structural

response

Planning of

optimal control

Probabilistic graphical model

Digital state inference and evolution prediction

Physical to digitalDigital to physical

Sensing

Digital state

evolution tracking
The digital state is a two

components vector

(damage zone, damage level)

are due to confusing adjacent digital states relat ive to the same damage locat ion, thus yielding a

t ridiagonal band matrix.

Figure 12: Railway bridge - Confusion mat rix measuring the o✏ine performance of the DL models

in correct ly categorizing the digital state. Results are reported in terms of classificat ion accuracy,

measuring how observat ional data are classified with respect to the ground t ruth digital state.

Digital states are ordered first for damage locat ion and then for damage level.

For the present case, we consider the following three possible cont rol inputs:

• Do nothing (DN) act ion. There isno maintenanceact ion planned in thiscaseand thephysical

state will evolve according to a stochast ic deteriorat ion process.

• Perfect maintenance (PM) act ion. A maintenance act ion is performed and the asset is re-

stored from its current condit ion to the damage-free state.

• Restrict operat ional condit ions (RE) act ion. The operat ional condit ions of the bridge are

rest ricted by allowing only lightweight t rains, carrying less than 18 ton per axle, to t ravel

across the bridge. Such a rest rict ion results in a lower deteriorat ion rate, but also yields a

lower revenue generated by the infrast ructure.

We prescribe a stochast ic degradat ion process featuring a probability of damage incept ion

(y 6= 0) equal to 0.5. Damage may develop in any of the predefined regions with damage level

sampled from a uniform dist ribut ion δ 2 [30%, 35%], and then propagatewith δ incrementssampled

from a Gaussian pdf centered at 1.5% and featuring a standard deviat ion equal to 1% (negat ive

increments are rounded to zero). When the operat ions are rest ricted and only lightweight t rains

are allowed to t ravel across the bridge, we instead assume a probability of damage incept ion equal

to 0.25. In this eventuality, damage may develop with damage level sampled from a uniform

dist ribut ion δ 2 [30%, 35%], and then propagate with δ increments sampled from a Gaussian pdf

centered at 0.95% and featuring a standard deviat ion equal to 0.5%. The result ing t rajectory of

the st ructural health parameters is intended to represent periods of gradual degradat ion in the

st ructural health, as well as sudden changes due to discrete damage events.

The transit ion model p(D t + 1|D t , UA
t = uA

t ) associated with theDN act ion assumes that damage

may start in any subdomain ⌦j , with j = 1, . . . , Ny , with probability 0.1, and then grow to the

next δ interval with the same probability. For the t ransit ion model associated with the RE act ion,

this probability is assumed to decrease to 0.03. The t ransit ion model assumed for the PM act ion

instead maps the D t belief to a belief D t + 1 associated with a damage-free condit ion, independent ly

of the current condit ion.

In this case, the two reward funct ions in Eq. (9) are chosen as:

Rcont rol
t (uA

t ) =

8
<

:

+ 30, if uA
t = DN,

− 250, if uA
t = PM,

+ 27, if uA
t = RE,

Rheal t h
t (dt ) =

8
<

:

+ 0, if y = 0,

− exp(5δ) + 4, if y 6= 0,

− 250, if δ ≥ 79%,

(23)

18

14
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• “Do nothing” (DN): the physical state evolves according to a stochastic deterioration process.

• “Perfect maintenance” (PM): A maintenance action is performed and the asset returns from its

current condition to the damage-free state.

• “Restrict operational conditions” (RE): only light weight trains are allowed to cross the bridge: 

lower deterioration rate, but also lower revenue generated by the infrastructure.

Possible control inputs 

solved offline via value iteration.
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Each control input is provided with a

conditional probability table describing the

corresponding transition model.

• DN: damage may start in any subdomain with 0.1 probability,

and then grow to the next δ interval with the same probability.

• PM: the belief about the digital state is mapped to the

undamaged condition, independently of the current condition.

• RE: damage may start in any subdomain, with 0.03 probability,

and then grow to the next δ interval with the same probability.

• “Do nothing” (DN): the physical state evolves according to a stochastic deterioration process.

• “Perfect maintenance” (PM): A maintenance action is performed and the asset returns from its

current condition to the damage-free state.

• “Restrict operational conditions” (RE): only light weight trains are allowed to cross the bridge: 

lower deterioration rate, but also lower revenue generated by the infrastructure.

Possible control inputs 

Transition models

solved offline via value iteration.
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To run a digital twin simulation we prescribe a (simulated) stochastic

degradation process: the digital twin is dynamically updated and

used to drive maintenance planning.

Damage may develop in any of the predefined regions and then

propagate with δ increments sampled from a Gaussian pdf, chosen

according to the last enacted control input.
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Predicted evolution over 

20 time steps in future from tc = 5

To run a digital twin simulation we prescribe a (simulated) stochastic

degradation process: the digital twin is dynamically updated and

used to drive maintenance planning.

Damage may develop in any of the predefined regions and then

propagate with δ increments sampled from a Gaussian pdf, chosen

according to the last enacted control input.



• The transition models are currently prescribed by the user. To better characterize them, it would

be useful to update the transition dynamic models from the online data stream. This would

result in a more calibrated prediction of the digital state expected evolution.

• The planning problem is currently solved by considering an infinite planning horizon, not

realistic for civil structures. A more viable alternative would be a finite planning horizon

representing the design lifetime of the asset and, e.g., reinforcement learning.

• Quantities of interest such as modal quantities or full response fields obtained through ROMs,

currently not exploited, could be used to perform posterior predictive checks on the

tracking capabilities of the digital twin, useful to evaluate how well it matches the reality.

Future developments

17
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Thiswork proposesapredictivedigital twin approach to thehealth monitoring and management planning of civil

structures. Theasset-twin dynamical system and its evolution over timeareencoded by means of aprobabilistic

graphical model, adopted to rule the observations-to-decisions flow and quantify the related uncertainty. Deep

learning models are adopted to assimilate observational data, and provide structural health diagnostics in real-

time. The digital state is updated in a sequential Bayesian inference fashion, to inform an optimal planning of

maintenance and management actions. A preliminary offline phase involves the population of training datasets

through a reduced-order numerical model, and the computation of ahealth-dependent control policy.

Keywords: Digital twin, Structural health monitoring, Bayesian network, Deep learning, Model order reduction

1. Introduction

Thedigital twin (DT) concept represents themost exciting opportunity to moveforward predictivemaintenance

practices, and thus increase the safety and availability of civil structures. This isnowadays possible as the installa-

tion of data collecting systems has become affordable, and thanks to the advances in learning methodologies.

Thiswork proposesaDT framework for civil structures. Theasset-twin dynamical system isencoded by means

of adynamic Bayesian network (DBN) inspired by [1]. The observations-to-decisions flow is encoded as:

• From physical to digital. Observational data, or measurements, are gathered from the physical system and

assimilated with deep learning (DL) models, seee.g. [2], to estimate thestructural health parametersunderly-

ing the digital state and describing the variability of the physical asset. This first estimate of the digital state

is then exploited to estimate an updated digital state, according to control-dependent transition dynamics

models describing how thestructural health is expected to evolve.

• Fromdigital to physical. Theupdated digital state isemployed to predict the futureevolution of thephysical

system, thereby enabling predictivedecision making about maintenance and management actions.

The DT framework is made computationally efficient through a preliminary offlinephase that involves: (i) the

population of training datasets through areduced-order numerical model, seee.g. [3], exploiting thephysics-based

knowledge about the system response. This is useful to overcome the lack of experimental data typical of civil

engineering applications. (ii) training theDL modelsunderlying thestructural health identification. Thisallowsfor

automating the selection and extraction of optimized damage-sensitive features, to ultimately relate them with the

corresponding structural states in real-time. (iii) learning the health-dependent control policy to be applied at each

timestep of theonline phase, to map thebelief over thedigital stateonto actions feeding back to thephysical asset.

The strategy is assessed on the simulated monitoring of a railway bridge, demonstrating the capabilities of

health-aware DTs of accurately tracking the evolution of structural health parameters under varying operational

conditions, and promptly suggesting the most appropriate control input with relatively low uncertainty.

1



References
• Torzoni, Tezzele, Mariani, Manzoni, Willcox. A digital twin framework for civil engineering 

structures, arXiv preprint, 2023.

• Kapteyn, Pretorius, Willcox. A probabilistic graphical model foundation for enabling predictive 

digital twins at scale, Nature Computational Science,1(5):337–347, 2021.

• Torzoni, Rosafalco, Manzoni, Mariani, Corigliano. SHM under varying environmental conditions: 

an approach based on model order reduction and deep learning, Computers & Structures, 

266:106790, 2022.

• Rosafalco, Torzoni, Manzoni, Mariani, Corigliano. Online structural health monitoring by model 

order reduction and deep learning algorithms, Computers & Structures, 255:106604, 2021.

• Torzoni, Manzoni, Mariani. A multi-fidelity surrogate model for structural health monitoring 

exploiting model order reduction and artificial neural networks, Mechanical Systems and Signal 

Processing, 197:110376, 2023.

• Torzoni, Manzoni, Mariani. Structural health monitoring of civil structures: a diagnostic 

framework powered by deep metric learning, Computers & Structures, 271:106858, 2022.

Dipartimento di Ingegneria Civile e Ambientale

Politecnico di Milano
matteo.torzoni@polimi.it



Offline:

• Derive the reduced-order model

• Populate the training dataset

• Train the SHM deep learning models

• Estimate the transition models

from historical data of similar structures

• Compute the control policy (planning)

Online (repeats indefinitely):

• Assimilate incoming observational data

• Inference of digital state and control inputs

• Update                on the online data stream 

• Compute quantities of interest

• Predict the digital state evolution

• Enact the suggested control action Bonus
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