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The need of Structural Health Monitoring (SHM)

Aloha Airlines 1988, separation of
the fuselage upper lobe — 1 fatality

Genoa 2018, partial collapse of the =
Morandi Bridge — 43 fatalities |
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What is SHM?
The implementation of a
damage detection strategy for
deteriorating structures.

Why SHM?
Optimal management: to reduce
lifecycle costs and to increase the
system safety and availability.



State-of-art: workflow & SHM hierarchical structure
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State-of-art: workflow & SHM hierarchical structure

Damage is any change in a structural property
negatively affecting a mechanical system
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State-of-art: workflow & SHM hierarchical structure

Damage is any change in a structural property
negatively affecting a mechanical system

P

DETECTION
!

LOCALIZATION
!

QUANTIFICATION

Sensor observations — Underlying __._, Levels of _
(multivariate time series, o cause detall
e.g. accelerations meas.) Vibration-based Q
SHM
Data-driven Model-based

(need labeled
training datasets)

(need reduced-order
or surrogate models)

!
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Which data? = Physics-based models (localization, quantification)



SHM for optimal management of deteriorating structures

o CORRECTIVE yesterday

(fault driven)
¥

Maintenance _| SCHEDULED  |today
paradigm shift (time based)

CONDITION-BASED | sensor data
—  or PREDICTIVE systematic diagnoses




SHM for optimal management of deteriorating structures

o CORRECTIVE yesterday
(fault driven)

T Digital twin
Maintenance _ SCHEDULED  |today 7N
paradigm shift (time based) “

CONDITION-BASED | sensor data Physical object

—  or PREDICTIVE systematic diagnoses

- : : Virtual replica
Goal: create a digital twin that adapts to the evolving structural

health providing real-time health diagnostics that enable dynamic Lﬁé’—-:\
decision making about management and maintenance actions. &1 G ,,@

Data + models
Data assimilation
Prediction

Automatic information flow
—




Overview: end-to-end information flow
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Overview:

Main components:

end-to-end information flow
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*» Simulation-based damage identification
¢ Structural health identification using neural networks

“+ Probabillistic graphical model for predictive digital twins
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Physics-based models to simulate the effect of damage

Governing equation of motion

po+1no —V-o(v,p) =b(x,t,n)  inQx(0,7T)
v=gp(x,t,pn) onI'p x (0,7)
Q o(v,u) - n=gy(x,t, 1) onI'y x (0,T
v(t =0) = vg(x) in Q
L v(t=0) =vy(x) in

Linearized kinematics
() = 5 [Volu) + (Vo(u) ]

Linear-elastic material
o(p) = D(p)e(v(p))

Physics-based model describing the dynamic
response of a structure to the applied loadings

— Finite element space discretization

( 1\%&)(?5) + C(p)x(t) + K(p)x(t) = £(t, p),
x(0) = X0

| %(0) = %o

te (0,7T)




Physics-based models to simulate the effect of damage
Governing equation of motion Linearized kinematics Linear-elastic material
((po+n0 =V -o(v,p)=>b(x,t,p)  inQx(0,7T) e(p) = %[Vv(u) + (Vo(p)) '] o(p) = D(p)e(v(p))
v=gp(x,t,pn) onI'p x (0,7)
Q o(v,u) - n=gy(x,t, 1) onI'y x (0,7T)
v(t =0) = vg(x) in Q
L v(t=0) =vy(x) in

Physics-based model describing the dynamic

. . — Finite element space discretization
response of a structure to the applied loadings

( 1\?&)(?5) +C()x(t) + K(p)x(t) = £t ), t€(0,7)
¢ x(0 = X
%(0) = %o

\

Parameter vector p: damage, loadings, environment, ...

Given initial conditions, boundary conditions, and system parameters
compute solution trajectories, to be compared with sensor recordings «--- 5



The need of reduced-order modeling (ROM)

« The offline generation of synthetic training datasets, sufficiently representative of potential damage
and operational conditions, may become prohibitive.
« We employ the reduced basis method for parametrized systems (not a restrictive choice).



The need of reduced-order modeling (ROM)

« The offline generation of synthetic training datasets, sufficiently representative of potential damage
and operational conditions, may become prohibitive.
« We employ the reduced basis method for parametrized systems (not a restrictive choice).

FOM

Low-dimensional subspace
W (POD/SVD or greedy)
best rank N approximation

|
x(t, p) =~ WX(t, p)
!

(Petrov)-Galerkin projection

ROM

M, = C,.(u) =W'C(p)W
K, (n) =W KW  f£.(t,u) = WTf(t,p)

M, x(t) + Cr()X(t) + K, ()X(t) = £.(t,p)  Low-dimensional dynamical system
X(0) = W 'xg (low-cost physics-based model)
2(0) = W% 6



Overview:

Main components:

end-to-end information flow

Digital to physical
9 y

Planning of
optimal control

T A

\
Digital state

evolution tracking

Damage probability in region Q,

A e

& == Physical to digital

Digital lwtn

aaaaaaaa

Probabilistic graphical model

a5

T RO

t=1
1

’
:
.
.

¥

(s)

t=2
!

*» Simulation-based damage identification
¢ Structural health identification using neural networks

“+ Probabillistic graphical model for predictive digital twins

Sensing

Sensed structural
response

© AN AL A P

© A AN A AR AN e,

Structural health
identification




Data-driven approach to inverse problems — neural network case

Sensed structural
response

F = Forward operator (parameters — measurements)
A — Inverse problem (measurements — sought parameters)

- - Structural health
To+ := Neural network approximation to 7 identification

Loss function prototype

= aregxginZH(Ie o F)(rj) — 1y
E .
J




Data-driven approach to inverse problems — neural network case

Sensed structural

response
F = Forward operator (parameters — measurements) |
Z := Inverse problem (measurements — sought parameters) -
- - Structural health
Lo~ := Neural network approximation to 7 identification
| Loss function prototype - RG
— argmin E :H(ZOOF)(N]')_NJ'H T |
0c® : ol? presence, location,
J >, \severity of damage
The case of SHM: —« stiffness reduction

* |loose knot bolts
« crack pattern

< measurements: experimental (sensors) vs simulated (reduced-order model) —* delamination size

% parameters pt: define an expressive representation of the structural health —

< forward operator J: real vs simulated structural response



Simulation-based damage detection/localization & quantification

q(t)

Simulation-based SHM: the problem is traced back to
train machine learning models on simulated data.

Damage: introduce damageable regions distributed

Q, Q, Qs over the structure and model the effect of damage.

T 0 Processed data: vibration recordings shaped as
Ut

(1) A1) us(1) multivariate time series, mimicking a sensor network.




Simulation-based damage detection/localization & quantification

q(t)

Simulation-based SHM: the problem is traced back to
train machine learning models on simulated data.

Damage: introduce damageable regions distributed

Q. Q, Qs over the structure and model the effect of damage.

T 0 Processed data: vibration recordings shaped as
Ut

(1) A1) us(1) multivariate time series, mimicking a sensor network.

Evaluate forward models to generate training data and train inverse models (offline):

I Ny
1 ~
Dor = {(Uy, i)}, Lc1,(Ocr, Der) = —7 Yj Yj b;" log(b;")
1=1 m=0
. 1 Irc R
Dra = {(U’iRGa 5’iRG)}i:§:1 ['RG(@RGaDRG) — E Z (573RG - 573RG)2
ira=1
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s Probabilistic graphical model for predictive digital twins
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Probab|l|st|c graphlcal model encoding the asset-twin system

Planning of
optimal control
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Digital state
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Physical state:

Digital state:
Observations:

Qol:

Control inputs:

Reward:

¥ Digital state inference and evolution prediction

E=m. Physical to digital

Sensing

Sensed structural
response
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(s¢) - variability of the asset
(dy) - capture the asset variability
Oy ~ p(0o) - from physical to digital flow
( ) - estimated via model output
( ) - from digital to physical flow
) - asset-twin performance

Key assumptions:

Physical state only observable indirectly
via the sensed structural response.

Markovianity of physical and digital states.
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Belief state factorization

-y ’ o @* U Physical state: St ~ p(s¢)
| . Digital state: Dy ~ p(d)
\ control ! m ! Observations: Oy ~ p(Ot)
: t Ds ; Qol: Q¢ ~ p(qt)
?OI rewardy ¥ Control inputs: U; ~ p(uy)
‘ ‘ ‘ ‘ Reward: R: ~ p(ry)
F—0 —1 t =2

| | >
>

NN NN A A
(DO y . 7Dtc 7D07"'7Dtc7Q07'°'7QtC7ROa"'7thaU07"°7Utc|007°°°70tc7u07"'7utc)

data  history NN ,Qol ,control ;reward
X H[Cb N P Py t t :|7

8 (00 = D), O (DD U =), A = p(DDI),
(@D, 1 = p(Re| Dy, U = ), ol = p(U|Dy).



Planning of optimal control & extension to prediction

@ @ * Forecasting/maintenance planning
. . /\/ . . from the updated digital state at the
D : (0] R (0] R i current time step (no data assimilation).
X X X X » Unroll the portion of the graph relative to
‘ ‘ ‘ ‘ ‘ digital state, control inputs, reward and
guantities of interest.
t—t t—t +1 t—t + 2 t—t + 3

Y

13



Planning of optimal control & extension to prediction
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« Unroll the portion of the graph relative to
‘ ‘ ‘ ‘ ‘ digital state, control inputs, reward and

guantities of interest.
t—t t—t +1 t—t + 2 t—t + 3

@ « Forecasting/maintenance planning
from the updated digital state at the
current time step (no data assimilation).

4__
4__.-___
/

|-
>

+o00 Multi-objective planning reward function
m(Dy) = argmax Y y'E[R]  Ri(Up, Di) = R U,) + aRp™(D,)

4 t=0

control — »(U,|D;) Control policy maps the digital state belief onto actions

NN NN A A
(D D D(),...,Dtp,Q(),...,Qtp,R(),...,Rtp,U(),...,Utp|00,...,0tc,u0,...,’U,tc)

te
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Hornefors railway bridge
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Damage modeling:

Undamaged case

+ 6 damageable zones

Stiffness reduction in the range
(30%,80%), 6 intervals discretiz.
(37 possible structural states)
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Possible control inputs

* “Do nothing” (DN): the physical state evolves according to a stochastic deterioration process.
« “Perfect maintenance” (PM): A maintenance action is performed and the asset returns from its
current condition to the damage-free state.

« “Restrict operational conditions” (RE): only light weight trains are allowed to cross the b

lower deterioration rate, but also lower revenue generated by the infrastructure.

—+o0

control — (7], | Dy) m(Dy) = argmax » +'E[R],  solved offline via value iteration.
T t=0

15



Possible control inputs

* “Do nothing” (DN): the physical state evolves according to a stochastic deterioration process.
+ “Perfect maintenance” (PM): A maintenance action is performed and the asset returns from its
current condition to the damage-free state.

+ “Restrict operational conditions” (RE): only light weight trains are allowed to cross the bry”” \;
lower deterioration rate, but also lower revenue generated by the infrastructure.

—+o0

control — (7], | Dy) m(Dy) = argmax » +'E[R],  solved offline via value iteration.
T t=0

Transition models

Each control input is provided with a <+ DN: damage may start in any subdomain with 0.1 probability,
conditional probability table describing the and then grow to the next d interval with the same probability.

corresponding transition model. « PM: the belief about the digital state is mapped to the
undamaged condition, independently of the current condition.

history 4 4  RE: damage may start in any subdomain, with 0.03 probability,
. = p(D¢|Dy—1, U] =u; ) and then grow to the next & interval with the same probability.

15



Ground-truth evolution model

To run a digital twin simulation we prescribe a (simulated) stochastic
degradation process: the digital twin is dynamically updated and
used to drive maintenance planning.

Damage may develop in any of the predefined regions and then
propagate with & increments sampled from a Gaussian pdf, chosen
according to the last enacted control input.

Digital to physical » Physical to digital
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Planning of
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Digital to physical == Physical to digital

Ground-truth evolution model
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region R AN WS et
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according to the last enacted control input.
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Ground-truth evolution model

To run a digital twin simulation we prescribe a (simulated) stochastic
degradation process: the digital twin is dynamically updated and

used

to drive maintenance planning.

Damage may develop in any of the predefined regions and then
propagate with & increments sampled from a Gaussian pdf, chosen
according to the last enacted control input.
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Future developments

» The transition models are currently prescribed by the user. To better characterize them, it would
be useful to update the transition dynamic models from the online data stream. This would
result in a more calibrated prediction of the digital state expected evolution.

 The planning problem is currently solved by considering an infinite planning horizon, not
realistic for civil structures. A more viable alternative would be a finite planning horizon
representing the design lifetime of the asset and, e.g., reinforcement learning.

* Quantities of interest such as modal quantities or full response fields obtained through ROMs,
currently not exploited, could be used to perform posterior predictive checks on the
tracking capabilities of the digital twin, useful to evaluate how well it matches the reality.

17
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Probab|l|st|c graphlcal model encoding the asset-twin system

Digital to physical

Planning of
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4 Digital state inference and evolution prediction

Derive the reduced-order model
Populate the training dataset
Train the SHM deep learning models

Estimate the transition models ¢~ "
from historical data of similar structures

Compute the control policy (planning)

Online (repeats indefinitely):

Assimilate incoming observational data

Inference of digital state and control inputs

history

Update ¢ on the online data stream

Compute quantities of interest
Predict the digital state evolution
Enact the suggested control action

Bonus
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