

October 20th, 2023 (Rome) BUILD-IT Workshop 2023

Automatic discovery of low-dimensional dynamics underpinning time-dependent PDEs by means of Latent Dynamics Neural Networks

Francesco Regazzoni, Stefano Pagani, Matteo Salvador, Luca Dede', Alfio Quarteroni

MOX - Dipartimento di Matematica, Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

Model Order Reduction of time-dependent models

Learning mathematical models from data

Challange: How to automate this process?

Data-driven modeling of time-dependent processes

- Control of an engine
- Wind strength
- Price of an asset
- Strength of a social measure
- Dose of a farmakon

Learning time-dependent differential equations

1. Training input-output pairs:	$ \begin{split} \hat{\mathbf{u}}_{j} &\in \mathcal{U} = \mathcal{C}^{0}([0,T];U) & \text{input space, where} U \subset \mathbb{R}^{N_{u}} \\ \hat{\mathbf{y}}_{j} &\in \mathcal{Y} = \mathcal{C}^{0}([0,T];Y) & \text{output space, where} Y \subset \mathbb{R}^{N_{y}} \end{split} $
2. Candidate models class:	$n \in \mathbb{R}$ $\mathbf{f} \in \widehat{\mathcal{F}} \subset \mathcal{F}_n := \{\mathbf{f} \in \mathcal{C}^0(\mathbb{R}^n \times U; \mathbb{R}^n), \text{ Lipschitz cont. in } \mathbf{x} \text{ uniformly in } \mathbf{u}\}$ $\mathbf{g} \in \widehat{\mathcal{G}} \subset \mathcal{G}_n := \mathcal{C}^0(\mathbb{R}^n; \mathbf{Y})$ $\mathbf{x}_0 \in \widehat{\mathcal{X}} \subset \mathcal{X}_n \equiv \mathbb{R}^n$
	$\begin{cases} \dot{\mathbf{x}}(t) &= \mathbf{f}(\mathbf{x}(t), \mathbf{u}(t)), & t \in (0, T] \\ \mathbf{x}(0) &= \mathbf{x}_0 & & \\ \mathbf{y}(t) &= \mathbf{g}(\mathbf{x}(t)), & t \in (0, T], \end{cases}$ It uniquely identifies a map: $\varphi_{\mathbf{f}, \mathbf{g}, \mathbf{x}_0} \colon \mathcal{U} \to \mathcal{Y}$
	$\Phi^{\widehat{\mathcal{F}},\widehat{\mathcal{G}},\widehat{\mathcal{X}}} = \left\{ \varphi_{\mathbf{f},\mathbf{g},\mathbf{x}_0} \in \Phi \text{ s.t. } \mathbf{f} \in \widehat{\mathcal{F}}, \mathbf{g} \in \widehat{\mathcal{G}}, \mathbf{x}_0 \in \widehat{\mathcal{X}} \right\}$
3. Best-approximation problem:	$\varphi^* = \operatorname*{argmin}_{\varphi \in \Phi^{\widehat{\mathcal{F}}, \widehat{\mathcal{G}}, \widehat{\mathcal{X}}}} \frac{1}{2} \sum_{j=1}^{N_s} \int_0^T \widehat{\mathbf{y}}_j(t) - (\varphi \widehat{\mathbf{u}}_j)(t) ^2 dt$
How to cale at the cate of	Or, equivalentely: $1 \sum_{k=1}^{N} C_{k} = C_{k} + C_{$
candidate functions?	
? How to solve the best- approximation problem?	$\begin{cases} \text{s.t.} & \dot{\mathbf{x}}_{j}(t) = \mathbf{f}(\mathbf{x}_{j}(t), \widehat{\mathbf{u}}_{j}(t)), t \in (0, T], j = 1,, N_{s} \\ \mathbf{x}_{j}(0) = \mathbf{x}_{0}, j = 1,, N_{s}, \\ \mathbf{y}_{j}(t) = \mathbf{g}(\mathbf{x}_{j}(t)), t \in (0, T], j = 1,, N_{s} \end{cases}$

Universal approximation

Theorem (Regazzoni, Dede', Quarteroni, JCP 2019)

Let U be compact and suppose that $\widehat{\mathcal{F}} \subseteq \mathcal{F}_n$ and $\widehat{\mathcal{G}} \subseteq \mathcal{G}_n$ are such that for each compact set $E \subset \mathbb{R}^n$: $\forall \varepsilon > 0 \quad \forall \mathbf{f} \in \mathcal{F}_n \quad \exists \widehat{\mathbf{f}} \in \widehat{\mathcal{F}} \quad \forall \mathbf{x} \in E, \mathbf{u} \in U \quad \text{s.t.} \quad \left| \mathbf{f}(\mathbf{x}, \mathbf{u}) - \widehat{\mathbf{f}}(\mathbf{x}, \mathbf{u}) \right| \leq \varepsilon$ $\forall \varepsilon > 0 \quad \forall \mathbf{g} \in \mathcal{G}_n \quad \exists \widehat{\mathbf{g}} \in \widehat{\mathcal{G}} \quad \forall \mathbf{x} \in E \quad \text{s.t.} \quad \left| \mathbf{g}(\mathbf{x}) - \widehat{\mathbf{g}}(\mathbf{x}) \right| \leq \varepsilon.$

Then, the subset of models $\Phi^{\widehat{\mathcal{F}},\widehat{\mathcal{G}},\mathcal{X}_n}$ is dense in the model space $\Phi^{\mathcal{F}_n,\mathcal{G}_n,\mathcal{X}_n}$: $\forall \varepsilon > \mathbf{0} \quad \forall \varphi \in \Phi^{\mathcal{F}_n,\mathcal{G}_n,\mathcal{X}_n} \quad \exists \widehat{\varphi} \in \Phi^{\widehat{\mathcal{F}},\widehat{\mathcal{G}},\mathcal{X}_n} \quad \text{s.t.} \quad \|\varphi - \widehat{\varphi}\|_{\mathcal{C}^0(\mathcal{U};\mathcal{Y})} \leq \varepsilon.$

Definition

An **Artifical Neural Network** (ANN) is a function: $\Phi = T_n \circ \sigma \circ T_{n-1} \cdots \circ T_1 \circ \sigma \circ T_0$ where T_j are affine functions and σ is a (prescribed) nonlinear function acting componentwise

Define: \mathcal{F}_n^{ANN} : the space of ANNs with $n + N_u$ input neurons and n output neurons \mathcal{G}_n^{ANN} : the space of ANNs with n and N_y input and output neurons

Corollary

If U is compact, the space of ANN models $\Phi^{\mathcal{F}_n^{ANN},\mathcal{G}_n^{ANN},\mathcal{X}_n}$ is dense in the model space $\Phi^{\mathcal{F}_n,\mathcal{G}_n,\mathcal{X}_n}$

Model-Learning: architecture

- The recurrent part is formally similar to an ODE-net. However the dynamics of **x**(t) is not known a-priori.
- The latent state **x**(t) provides a compact encoding of the high-fidelity model state. However, the mapping is never explicitly constructed!
- The two ANNs are trained simultaneously: the training algorithm selects the latent variables to
 - Predict the system dynamics
 - Reconstruct the output

F. Regazzoni, L. Dede', A. Quarteroni "Machine learning for fast and reliable solution of time-dependent differential equations", *Journal of Computational Physics* (2019)

Test cases

Data-driven modeling of time-dependent processes

$ \begin{cases} \textbf{Full-order model (FOM)} \\ \begin{cases} \partial_t \mathbf{z}(\mathbf{x},t) = \mathcal{L}(\mathbf{z}(\mathbf{x},t),\mathbf{u}(t),\boldsymbol{\mu}) & \text{ in } \Omega \times (0,T] \\ \mathbf{y}(\mathbf{x},t) = \mathcal{G}(\mathbf{z}(\mathbf{x},t),\mathbf{u}(t),\boldsymbol{\mu},\mathbf{x}) & \text{ in } \Omega \times (0,T] \\ \mathbf{z}(\mathbf{x},0) = \mathbf{z}_0 & \text{ in } \Omega \end{cases} $	\mathcal{NN}_{dyn} $LDNet$ $Latent Dynamics$ $Network$ $Network$ M_{dyn} $Latent Dynamics$ $Network$
$ \begin{cases} \textbf{Reduced-order model (ROM)} \\ \dot{\mathbf{s}}(t) = \mathbf{f}(\mathbf{s}(t), \mathbf{u}(t), \boldsymbol{\mu}; \mathbf{w_f}) & \text{ in } (0, T] \\ \widetilde{\mathbf{y}}(\mathbf{x}, t) = \mathbf{g}(\mathbf{s}(t), \mathbf{u}(t), \boldsymbol{\mu}; \mathbf{x}; \mathbf{w_g}) & \text{ in } (0, T] \\ \mathbf{s}(0) = 0 \end{cases} $	
$\begin{aligned} & \underset{\mathbf{w}_{\mathbf{f}}, \mathbf{w}_{\mathbf{g}}}{\operatorname{argmin}} \sum_{i=1}^{N_s} \sum_{t \in \mathscr{T}_{\mathbf{y}}} \sum_{\mathbf{x} \in \mathscr{P}_{\mathbf{y}}} \left \widetilde{\mathbf{y}}^i(\mathbf{x}, t) - \mathbf{y}^i(\mathbf{x}, t) \right ^2 \end{aligned}$	$\begin{array}{c} X_2 \\ \uparrow \Omega \subset \mathbb{R}^d \\ \downarrow \downarrow \downarrow \downarrow \\ X_1 \end{array} \xrightarrow{V_{rec}} \mathcal{W}_{rec} \xrightarrow{V_{rec}} \mathcal{Y}(x,t) \\ \downarrow \mathcal{N}\mathcal{N}_{rec} \xrightarrow{V_{rec}} \mathcal{Y}(x,t) \\ \downarrow $

- Latent state **s**(t): low-dimensional encoding of the high-dimensional HF model state
- Low-dimensional manifold discovered without the need of training an autoencoder ۲
- Meshless representation of the space-dependent output: weights sharing

LDNets never operate in the high-dimensional space

- ✓ Lightweight
- ✓ Easy to train
- ✓ Excellent generalization ability

F. Regazzoni, S. Pagani, M. Salvador, L. Dede', A. Quarteroni, arXiv:2305.00094 (2023)

X1

Diffusion-reaction: amplitude + phase

Full-order model (FOM) $\begin{cases} \partial_t u(x,t) - \mu_1 \partial_{xx} u(x,t) + \mu_2 u(x,t) = f(x,t) & x \in (-1,1), t \in (0,T] \\ u(-1,t) = u(1,t) & t \in (0,T] \\ u(x,0) = 0 & x \in (-1,1) \end{cases}$

Goal: reconstruct *u*(*x*,*t*)

Sample solution (case A)

t

t

Diffusion-reaction: amplitude + phase

Unsteady Navier-Stokes

v = 0 v = 0 v = 0 v = 0 v = 0

Goal: reconstructing the velocity field $\mathbf{v}(\mathbf{x}, t)$

Training/validation set:

- 80/20 samples
- T=20
- 200 points in (0, 1)²

Testing set:

- 200 samples - T=40 (time extrapolation!)

- 400 points in (0, 1)²

F. Regazzoni, S. Pagani, M. Salvador, L. Dede', A. Quarteroni, arXiv:2305.00094 (2023)

Test case: Aliev Panfilov model

Goal: Learning the excitation-propagation dynamics of an excitable tissue

Aliev-Panfilov model

Test case: Aliev Panfilov model

LDNets outperform state-of-the-art approaches to learn space-time dynamics:

- ✓ Better accuracy
- ✓ Better generalization (lower overfitting)
- ✓ Fewer trainable parameters

F. Regazzoni, S. Pagani, M. Salvador, L. Dede', A. Quarteroni, arXiv:2305.00094 (2023)

For more information:

- F. Regazzoni, L. Dede', A. Quarteroni "Machine learning for fast and reliable solution of timedependent differential equations", *Journal of Computational Physics* (2019) 397, 108852.
- F. Regazzoni, L. Dede', A. Quarteroni "Machine learning of active force generation models for the efficient multiscale simulation of the cardiac function", *Computer Methods in Applied Mechanics and Engineering* (2020) 370, 113268.
- F. Regazzoni, D. Chapelle, P. Moireau "Combining data assimilation and machine learning to build data-driven models for unknown long time dynamics—Applications in cardiovascular modeling", International Journal for Numerical Methods in Biomedical Engineering (2021) 37(7), e3471.
- F. Regazzoni, M. Salvador, L. Dede', A. Quarteroni "A Machine Learning method for real-time numerical simulations of cardiac electromechanics " *Computer Methods in Applied Mechanics and Engineering* (2022) 393, 114825.
- F. Regazzoni, S. Pagani, A. Quarteroni. "Universal Solution Manifold Networks (USM-Nets): nonintrusive mesh-free surrogate models for problems in variable domains" *ASME Journal of Biomechanical Engineering* (2022) 144(12): 121004
- F. Regazzoni, S. Pagani, M. Salvador, L. Dede', A. Quarteroni "Latent Dynamics Networks (LDNets): learning the intrinsic dynamics of spatio-temporal processes" arXiv:2305.00094 (2023)

With the support of MUR, grant Dipartimento di Eccellenza 2023-2027

Backup slides

The concept of model

 $\mathcal{U} = \mathcal{C}^{0}([0, T]; U)$ input space, where $U \in \mathbb{R}^{N_{u}}$

 $\mathcal{Y} = \mathcal{C}^0([0, T]; Y)$ output space, where $Y \in \mathbb{R}^{N_y}$

We call **model** an object mapping inputs $\mathbf{u} \in \mathcal{U}$ into outputs $\mathbf{y} \in \mathcal{Y}$, satisfying the assumptions:

- **Time invariance** We can assume, W.L.O.G., all experiments starting from $t_0 = 0$.
- **Existence of an initial state** The map is well-defined.
- **Causality principle** Consistency with the arrow of time. $\forall \mathbf{u}_1, \mathbf{u}_2 \in \mathcal{U} \quad \forall t^* \in [0, T] \quad \text{if} \quad \mathbf{u}_1|_{[0,t^*]} = \mathbf{u}_2|_{[0,t^*]} \quad \text{then} \quad (\varphi \mathbf{u}_1)|_{[0,t^*]} = (\varphi \mathbf{u}_2)|_{[0,t^*]}$ (1)
- No input-output direct dependence The output for t = 0 is the same for each experiment. $\exists \mathbf{y}_0 \in Y \quad \text{s.t.} \quad \forall \mathbf{u} \in \mathcal{U} \quad (\varphi \mathbf{u})(0) = \mathbf{y}_0$ (2)

Definition

Set of all **models**: $\Phi = \{ \varphi : \mathcal{U} \to \mathcal{Y} \text{ s.t. (1) and (2) hold} \}$

 $\|\varphi\|_{\Phi} = \sup_{\mathbf{u}\in\mathcal{U}} \|\varphi\mathbf{u}\|_{\mathcal{Y}} = \sup_{\mathbf{u}\in\mathcal{U}} \sup_{t\in[0,T]} \|(\varphi\mathbf{u})(t)\|_{Y}$

The concept of model

$\mathcal{U} = \mathcal{C}^0([0,T];U)$	input space, where	$\pmb{U} \in \mathbb{R}^{\pmb{N}_u}$
--	--------------------	--------------------------------------

 $\mathcal{Y} = \mathcal{C}^0([0, T]; Y)$ output space, where $Y \in \mathbb{R}^{N_y}$

Definition

We call **model** an object mapping inputs $\mathbf{u} \in \mathcal{U}$ into outputs $\mathbf{y} \in \mathcal{Y}$, satisfying the assumptions:

(1) Causality principle: $\forall \mathbf{u}_1, \mathbf{u}_2 \in \mathcal{U} \quad \forall t^* \in [0, T] \quad \mathbf{u}_1|_{[0,t^*]} = \mathbf{u}_2|_{[0,t^*]} \Rightarrow (\varphi \mathbf{u}_1)|_{[0,t^*]} = (\varphi \mathbf{u}_2)|_{[0,t^*]}$ (2) Existence of an initial state: $\exists \mathbf{y}_0 \in Y \quad \text{s.t.} \quad \forall \mathbf{u} \in \mathcal{U} \quad (\varphi \mathbf{u})(0) = \mathbf{y}_0$ We define the set of all **models**: $\Phi = \{\varphi : \mathcal{U} \to \mathcal{Y} \quad \text{s.t.} (1) \text{ and } (2) \text{ hold} \}$ $\|\varphi\|_{\Phi} = \sup_{\mathbf{u} \in \mathcal{U}} \|\varphi \mathbf{u}\|_{\mathcal{Y}} = \sup_{\mathbf{u} \in \mathcal{U}} \sup_{t \in [0,T]} \|(\varphi \mathbf{u})(t)\|_{Y}$

- Given:
- a collection of input-output pairs:

$$\{(\widehat{\mathbf{u}}_{j}, \widehat{\mathbf{y}}_{j})\}_{j=1,\dots,N_{s}} \subset \mathcal{U} \times \mathcal{Y}$$

a set of candidate (low-dimensional) models: $\widehat{\Phi}\subseteq \Phi$

Best-approximation problem

$$\varphi^* = \operatorname*{argmin}_{\varphi \in \widehat{\Phi}} \frac{1}{2} \sum_{j=1}^{N_s} \int_0^T |\widehat{\mathbf{y}}_j(t) - (\varphi \widehat{\mathbf{u}}_j)(t)|^2 dt$$

Questions: • How to select $\widehat{\Phi} \subseteq \Phi$?

How to solve the best-approximation problem?

Solving the best-approximation problem

We consider, W.L.O.G., the input-outside-the-state approach.

We parametrize **f** and **g** by a finite number of parameters: $f(x, u; \mu), g(x; \nu)$

First-Order Optimality Conditions (Lagrange multipliers method)

- Discretization of the objective functional by composite trapezoidal rule.
- Discretization of the state-equation by Forward Euler scheme.

Test case 1: Nonlinear transmission line circuit (ODE)

Nonlinear diod (i = e^{40 v} - 1)
 Unitary resistor
 Unitary capacitator
 Current generator

High-fidelity model (N = 1000)

$$\begin{cases} \dot{v}_{1}(t) = -2 v_{1}(t) + v_{2}(t) + 2 - e^{40 v_{1}(t)} - e^{40(v_{1}(t) - v_{2}(t))} + u(t) \\ \dot{v}_{i}(t) = -2 v_{i}(t) + v_{i-1}(t) + v_{i+1}(t) + e^{40(v_{i-1}(t) - v_{i}(t))} - e^{40(v_{i}(t) - v_{i+1}(t))}, & \text{for } i = 2, ..., N - 1 \\ \dot{v}_{N}(t) = -v_{N}(t) + v_{N-1}(t) - 1 + e^{40(v_{N-1}(t) - v_{N}(t))}, & \text{for } i = 2, ..., N - 1 \\ y(t) = v_{1}(t) & \text{Test Error} \end{cases}$$

Test case 2: Heat equation (Parabolic PDE)

Snapshots of the solution (P2 Finite Element approximation with 3731 dof)

Test case 3: Wave equation (Hyperbolic PDE)

Cardiac electromechanics

wave-front propagation

calcium concentration

active stress

Model-Learning: application to multiscale problems

ANN-based cardiac force generation model

F. Regazzoni, L. Dedé, A. Quarteroni, Computer Methods in Applied Mechanics and Engineering, 2020

Semi-physical (grey-box) MOR

Black-box cost functional:

$$E_{\rm d}^2 = a_{\rm d}^{-1} \sum_{j=1}^{N_{\rm s}} \int_0^{T_j} |\widehat{y}_j(t) - y_j(t)|^2 dt$$

A priori knowledge from the HF model:

$$E_{g}^{2} = a_{g}^{-1} \sum_{j \in J_{r}} \sum_{i=2}^{n} \frac{\left(\mathbf{x}_{j}(T_{j}) \cdot \mathbf{e}_{i}\right)^{2}}{\frac{1}{T_{i}} \int_{0}^{T_{j}} \left(\mathbf{x}_{j}(t) \cdot \mathbf{e}_{i}\right)^{2} dt}$$

for some t^* , $\mathbf{X}(t^*) = \mathbf{X}_0 \implies \mathbf{x}(t^*) = \mathbf{x}_0$ (for $j \in J_r$ we have $\mathbf{X}(T_j) = \mathbf{X}_0$)

 $E_{\rm e}^2 = a_{\rm e}^{-1} |\mathbf{f}(\mathbf{x}_0, \mathbf{u}_0)|^2$

$$(X_0, u_0)$$
 equilibrium for $F \quad \Rightarrow \quad (x_0, u_0)$ equilibrium for f

$$\begin{cases} \min_{\mu \in \mathbb{R}^{w}} & \frac{1}{2}w_{d}^{2}E_{d}^{2} + \frac{1}{2}w_{g}^{2}E_{g}^{2} + \frac{1}{2}w_{e}^{2}E_{e}^{2} \\ \text{s.t.} & \dot{\mathbf{x}}_{j}(t) = \mathbf{f}(\mathbf{x}_{j}(t), \hat{\mathbf{u}}_{j}(t); \mu), \quad t \in (0, T_{j}], \quad j = 1, ..., N_{s} \\ & y_{j}(t) = \mathbf{x}_{j}(t) \cdot \mathbf{e}_{1}, \quad t \in (0, T_{j}], \quad j = 1, ..., N_{s} \\ & \mathbf{x}_{j}(0) = \mathbf{x}_{0}, \quad j = 1, ..., N_{s}. \end{cases}$$

HF-Electromechanics vs ANN-Electromechanics

Accuracy

Indicator	HF-EM	ANN-EM	Relative error
Stroke volume (mL)	58.45	58.42	5.64 · 10 ⁻⁴
Ejection fraction (%)	43.03	43.01	5.65 · 10 ⁻⁴
Max pressure (mmHg)	112.5	112.3	2.18 · 10⁻³
Work (mJ)	739.2	737.2	1.71 · 10⁻³

Computational time (20 cores)

	Ionic	Potential	Force gen.	Mechanics	Total
HF-EM	3.13 %	0.47 %	83.07 %	13.33 %	20h 18'
ANN-EM	41.21 %	4.80 %	2.54 %	51.45 %	2h' 03'

400 x speedup (force generation model)

10 x speedup (overall)

Memory usage

from 2198 (HF-EM) to 24 (ANN-EM) variables per nodal point 100 x memory saving

Dealing with non-uniqueness

Question: is the solution unique? In general, no! Suppose that the triplet (**f**, **g**, **x**₀) is a solution. Let **h**: $\mathbb{R}^n \to \mathbb{R}^n$ be invertible and sufficiently regular. $\widetilde{\mathbf{f}}(\widetilde{\mathbf{x}}, \mathbf{u}) = (\nabla \mathbf{h} \circ \mathbf{h}^{-1})(\widetilde{\mathbf{x}}) \mathbf{f}(\mathbf{h}^{-1}(\widetilde{\mathbf{x}}), \mathbf{u})$ $\widetilde{\mathbf{g}}(\widetilde{\mathbf{x}}) = \mathbf{g}(\mathbf{h}^{-1}(\widetilde{\mathbf{x}}))$ $\widetilde{\mathbf{x}}_0 = \mathbf{h}(\mathbf{x}_0).$

Idea: reduce $\widehat{\mathcal{F}}$, $\widehat{\mathcal{G}}$ and/or $\widehat{\mathcal{X}}$, to rule out (or reduce) ambiguity of representation (e.g. $\widetilde{\mathbf{x}} = \mathbf{h}_1(\mathbf{x}) = \mathbf{x} - \mathbf{x}_0$).

(a) Input-outside-the-state approach

$$\begin{cases} \min_{\mathbf{f}\in\widehat{\mathcal{F}},\mathbf{g}\in\widehat{\mathcal{G}}} & \frac{1}{2}\sum_{j=1}^{N_s}\int_0^T |\widehat{\mathbf{y}}_j(t) - \mathbf{g}(\mathbf{x}_j(t))|^2 dt \\ \text{s.t.} & \dot{\mathbf{x}}_j(t) = \mathbf{f}(\mathbf{x}_j(t), \widehat{\mathbf{u}}_j(t)), \quad t \in (0, T], \quad j = 1, \dots, N_s \\ & \mathbf{x}_j(0) = \mathbf{0}, \quad j = 1, \dots, N_s, \end{cases}$$

(b) Input-inside-the-state approach

$$\begin{array}{ll} \min_{\mathbf{f}\in\widehat{\mathcal{F}}} & \frac{1}{2}\sum_{j=1}^{N_{s}}\int_{0}^{T}|\widehat{\mathbf{y}}_{j}(t)-\pi^{N_{y}}(\mathbf{x}_{j}(t))|^{2}dt & \text{where } \pi^{N_{y}}(\mathbf{x})=(x_{1},\,x_{2},\,\ldots,\,x_{N_{y}})^{T} \\ \text{s.t.} & \dot{\mathbf{x}}_{j}(t)=\mathbf{f}(\mathbf{x}_{j}(t),\,\widehat{\mathbf{u}}_{j}(t)), \quad t\in(0,T], \quad j=1,\ldots,N_{s} \\ & \mathbf{x}_{j}(0)=(\mathbf{y}_{0}^{T},\,\mathbf{0}^{T})^{T}, \quad j=1,\ldots,N_{s}, \end{array}$$

A neural network based surrogate model of the LV function

Data-driven model of slow-scale processes

Application to hypertension

Francesco Regazzoni • BUILD-IT • 20/10/23

The high-fidelity cardiocirculatory model

Parameters-to-QoIs map: full-order model

Computationally demanding (our numerical tests: 4 hours on a 32-cores cluster computer for one heartbeat)

Unaffordable computational costs associated with:

- Sensitivity analysis
- Uncertainty quantification
- Parameter estimation under uncertainty

Machine Learning based emulators

- Y. Dabiri, A. Van der Velden, K. L. Sack, J. S. Choy, et al., Frontiers in Physics 7 (2019)
- S. Longobardi, A. Lewalle, S. Coveney, et al., Phil. Transactions of the Royal Society (2020)
- L. Cai, L. Ren, Y. Wang, W. Xie, et al., Royal Society Open Science 8 (1) (2021)

«extrapolate in time»)

Model-Learning based emulator

A neural network based surrogate model of the LV function

Results

F. Regazzoni, M. Salvador, L. Dedé, A. Quarteroni, Computer Methods in Applied Mechanics and Engineering, 2022

Trained ROMs

Parameter	Baseline	Unit	Description
$a_{ ext{XB}} \sigma_{ ext{f}} \ lpha \ C$	160.0 76.43 60.0 0.88	$\begin{array}{c} \mathrm{MPa} \\ \mathrm{mms}^{-1} \\ \mathrm{degrees} \\ \mathrm{kPa} \end{array}$	Cardiomyocytes contractility Electrical conductivity along fibers Fibers angle rotation Passive stiffness

Trained model	Parameters	Training set size	Hyperparameters			
	$\mathbf{P}\mathcal{M}$	$N_{ m train}$	N_z	$N_{ m layers}$	$N_{ m neurons}$	β
$\mathcal{M}_{\mathrm{ANN}}^{\mathrm{single}}$	$[a_{\rm XB}]$	30	2	1	8	0
$\mathcal{M}_{\mathrm{ANN}}^{\mathrm{full}}$	$[a_{\rm XB}, \sigma_{\rm f}, \alpha, C]$	40	1	1	12	0.01

Trained ROM: PV loops

Trained ROM: Qols

$egin{array}{l} \mathcal{M}^{ m single}_{ m ANN} extsf{-}\mathcal{C} { m vs} \mathcal{M}_{ m 3D} extsf{-}\mathcal{C} \ \mathcal{M}^{ m full}_{ m ANN} extsf{-}\mathcal{C} { m vs} \mathcal{M}_{ m 3D} extsf{-}\mathcal{C} \end{array}$	relative error R ² relative error R ²	$p_{\rm LV}(t)$ V 0.0336 0 0.0620 0	$V_{\rm LV}(t)$ 0.0090 0.0285	$\begin{array}{c} {5 \ hear} \\ {p_{\rm LV}^{\rm min}} \\ {0.0097} \\ {99.691} \\ {0.0517} \\ {94.370} \end{array}$	$\begin{array}{c} p_{\rm LV}^{\rm max} \\ p_{\rm LV}^{\rm max} \\ 0.0046 \\ 99.864 \\ 0.0272 \\ 95.302 \end{array}$	$V_{\rm LV}^{\rm min}$ 0.0139 99.896 0.0471 95.942	$\begin{array}{c} V_{\rm LV}^{\rm max} \\ 0.0035 \\ 99.948 \\ 0.0127 \\ 97.061 \end{array}$	Test dataset #1 Same time horizon as training dataset
$egin{array}{l} \mathcal{M}^{ m single}_{ m ANN} extsf{-}\mathcal{C} { m vs} \mathcal{M}_{ m 3D} extsf{-}\mathcal{C} \ \mathcal{M}^{ m full}_{ m ANN} extsf{-}\mathcal{C} { m vs} \mathcal{M}_{ m 3D} extsf{-}\mathcal{C} \end{array}$	relative error \mathbf{R}^2 relative error \mathbf{R}^2	$\begin{array}{cccc} p_{\rm LV}(t) & V \\ 0.0293 & 0 \\ 0.0631 & 0 \end{array}$	$V_{\rm LV}(t)$ 0.0071 0.0265	$\begin{array}{c} {\rm 10 \ hea} \\ p_{\rm LV}^{\rm min} \\ {\rm 0.0113} \\ {\rm 99.924} \\ {\rm 0.0442} \\ {\rm 92.227} \end{array}$	$\begin{array}{c} \text{rtbeats} \\ p_{\text{LV}}^{\text{max}} \\ 0.0037 \\ 99.980 \\ 0.0147 \\ 99.957 \end{array}$	$\begin{array}{c} V_{\rm LV}^{\rm min} \\ 0.0096 \\ 99.851 \\ 0.0382 \\ 99.229 \end{array}$	$\begin{array}{c} V_{\rm LV}^{\rm max} \\ 0.0031 \\ 99.944 \\ 0.0122 \\ 99.063 \end{array}$	Test dataset #2 Time horizon twice as long as in the training dataset time extrapolation!
$\mathcal{M}_{ m ANN}^{ m single}$ - \mathcal{C} vs $\mathcal{M}_{ m 3D}$ - \mathcal{C} (1 parameter)	p_{L}^{p}	nin [mmHg] artbeats eartbeats		p 80 - 5 h 60 - 10 40 - 20 - 20 80 - 80 10	max [mm eartbeats heartbeats	Hg]	120 - 5 f 105 - 90 - 75 - 60 - 45 - 30 30 45	V _{LV} ^{min} [mL] heartbeats heartbeats 165 10 heartbeats 10 heartbeats
$\mathcal{M}_{ m ANN}^{ m full}$ - \mathcal{C} vs $\mathcal{M}_{ m 3D}$ - \mathcal{C} (4 parameters)	25 5 he 20 15 10 5 10	artbeats eartbeats		80 - 5 h 60 - 10 40 - 20 - 80	eartbeats heartbeats		120 - 5 f 105 - 10 90 - 75 - 60 - 45 - 30 - 45	heartbeats heartbeats heartbeats 165 150 135 120 105 100 105 100 105 100 105 100 105 100 105 100 105 100 100

Variance-based Sensitivity Analysis

Variance-based Sensitivity Analysis (results)

 $T_{1A}^{contr} = 0.00 \ 0.00$ 0.00 0.00 0.00 0.00 C - 0.03 0.02 0.04 0.03 0.01 0.05 0.05 0.06 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.01 0.01 0.02 0.05 $\sigma_{\rm f} = 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.01 \ 0.01 \ 0.01 \ 0.00$ 0.01 0.01 $E_{BA}^{act} = 0.00 \ 0.00 \ 0.00 \ 0.00$ 0.00 0.00 0.00 0.00 0.00 0.04 0.03 0.05 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 $E_{\rm BA}^{\rm pass} - 0.00 0.00 0.00 0.00$ 0.00 0.00 0.00 0.00 0.00 0.17 0.21 0.05 0.01 0.00 0.00 0.04 0.00 0.00 0.00 0.00 $T_{BA}^{contr} = 0.00 \ 0.00 \ 0.00 \ 0.00$ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 $T_{\rm PA}^{\rm rel} = 0.00 \ 0.$ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 $E_{\rm BV}^{\rm act} = 0.01 \ 0.01 \ 0.01 \ 0.01$ 0.00 0.00 0.00 0.00 0.00 0.02 0.01 0.03 0.02 0.37 0.15 0.13 0.01 0.00 0.00 0.00 $E_{\rm BV}^{\rm pass} = 0.00 \ 0.00 \ 0.00 \ 0.00$ 0.00 0.01 0.00 0.00 0.01 0.15 0.12 0.22 0.16 0.02 0.03 0.42 0.01 0.02 0.00 0.00 0.00 0.00 0.53 0.24 $C_{AB}^{SYS} = 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.01 \ 0.00 \ 0.00 \ 0.05 \ 0.01 \ 0.00 \$ 0.13 0.05 $R_{\rm VEN}^{\rm SYS} = 0.07 \ 0.09 \ 0.10 \ 0.09$ 0.01 0.09 0.09 0.02 0.09 0.10 0.30 0.18 0.15 0.10 0.51 0.16 0.24 0.82 0.00 0.02 $C_{\rm VEN}^{\rm SYS} = 0.00 \ 0.00 \ 0.00 \ 0.00$ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 $L_{AB}^{SYS} = 0.00 \ 0.00 \ 0.00 \ 0.00$ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 $L_{\rm VEN}^{\rm SYS} = 0.00 \ 0.00 \ 0.00 \ 0.00$ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 $R_{AB}^{PUL} = 0.00 \ 0.00 \ 0.00 \ 0.00$ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 $R_{VEN}^{PU} = 0.00 \ 0.00 \ 0.01 \ 0.00 \ 0.01 \ 0.00 \ 0.01 \ 0.00 \$ 0.00 0.00 $C_{\rm VEN}^{\rm PUL} = 0.00 \ 0.00 \ 0.00 \ 0.00$ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 $L_{AB}^{PUL} = 0.00 \ 0.00 \ 0.00 \ 0.00$ 0.00 $R_{\rm min} = 0.00 \ 0.00 \ 0.00 \ 0.00$ 0.00 0.00 0.01 0.03 0.00 0.00 0.00 $R_{\text{max}} = 0.00 \ 0$ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.39 0.45 0.53 0.52 0.15 0.53 0.49 0.27 0.31 0.04 0.07 0.06 0.05 0.32 0.24 0.11 0.55 0.03 0.14 0.26

Bayesian Parameter estimation

Without ANN-based ROM

Bayesian Parameter estimation (results)

 $\mathcal{F}\colon \mathbf{p}\mapsto \mathbf{q}$ Parameters-to-Qols map

 $\mathbf{q}_{\mathrm{obs}} = \mathcal{F}(\mathbf{p}) + \epsilon$, $\epsilon \sim \mathcal{N}(\cdot|\mathbf{0}, \mathbf{\Sigma})$, $\mathbf{\Sigma}$ = noise covariance (measurement error + model error)

 $\pi_{
m prior}({f p})$ Prior distribution (a priori knowledge on the parameters)

Posterior distribution:

$$\pi_{\text{post}}(\mathbf{p}) = \frac{1}{Z} \mathcal{N}(\mathbf{q}_{\text{obs}} | \mathcal{F}(\mathbf{p}), \mathbf{\Sigma}) \pi_{\text{prior}}(\mathbf{p}), \quad Z = \int_{\mathscr{P}} \mathcal{N}(\mathbf{q}_{\text{obs}} | \mathcal{F}(\widehat{\mathbf{p}}), \mathbf{\Sigma}) d\pi_{\text{prior}}(\widehat{\mathbf{p}})$$

Test case

Observed Qols: maximim and minimum arterial pressures

Unknown parameters: myocardial contractility, systemic arterial resistance

Universal Solution Manifold Networks (USM-Nets)

